会合
机器人
计算机科学
抹香鲸
鲸鱼
人工智能
实时计算
遥感
工程类
地质学
生态学
航空航天工程
航天器
生物
化学
有机化学
肌红蛋白
作者
Ninad Jadhav,Sushmita Bhattacharya,Daniel M. Vogt,Yaniv Aluma,Pernille Tønnesen,Akarsh Prabhakara,Swarun Kumar,Shane Gero,Robert J. Wood,Stephanie Gil
出处
期刊:Science robotics
[American Association for the Advancement of Science (AAAS)]
日期:2024-10-30
卷期号:9 (95)
标识
DOI:10.1126/scirobotics.adn7299
摘要
Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning–based routing (autonomy module) and synthetic aperture radar–based very high frequency (VHF) signal–based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an “engineered whale”—a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.
科研通智能强力驱动
Strongly Powered by AbleSci AI