已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Diagnostic Accuracy of Fresh Vertebral Compression Fractures with Deep Learning Models

医学 深度学习 人工智能 压缩(物理) 机器学习 接收机工作特性 椎体压缩性骨折 数据集 放射科 计算机科学 材料科学 复合材料 经皮 内科学
作者
Kaiyu Li,Hao-Bo Ye,Yulong Zhang,Jiawei Huang,Hua-Lin Li,Naifeng Tian
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/brs.0000000000005156
摘要

Study Design: Retrospective study. Objectives: The study aimed to develop and authenticated a deep learning model based on X-ray images to accurately diagnose fresh thoracolumbar vertebral compression fractures. Summary of Background Data: In clinical practice, diagnosing fresh vertebral compression fractures often requires MRI. However, due to the scarcity of MRI resources and the high time and economic costs involved, some patients may not receive timely diagnosis and treatment. Using a deep learning model combined with X-rays for diagnostic assistance could potentially serve as an alternative to MRI. Methods: In this study, the main collection included X-ray images suspected of thoracolumbar vertebral compression fractures from the municipal shared database between December 2012 and February 2024. Deep learning models were constructed using frameworks of EfficientNet, MobileNet, and MnasNet respectively. We conducted a preliminary evaluation of the deep learning model using the validation set. The diagnostic performance of the models was evaluated using metrics such as AUC value, accuracy, sensitivity, specificity, F1 score, precision, and ROC curve. Finally, the deep learning models were compared with evaluations from two spine surgeons of different experience levels on the control set. Results: This study included a total of 3025 lateral X-ray images from 2224 patients. The dataset was divided into a training set of 2388 cases, a validation set of 482 cases, and a control set of 155 cases. In the validation set, the three groups of DL models had accuracies of 83.0%, 82.4%, and 82.2%, respectively. The AUC values were 0.861, 0.852, and 0.865, respectively. In the control set, the accuracies of the three groups of DL models were 78.1%, 78.1%, and 80.7%, respectively, all higher than spinal surgeons and significantly higher than junior spine surgeon. Conclusion: This study developed deep learning models for detecting fresh vertebral compression fractures, demonstrating high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书岩完成签到,获得积分10
刚刚
粥粥完成签到,获得积分10
2秒前
3秒前
5秒前
lxt819完成签到,获得积分10
7秒前
小思发布了新的文献求助10
8秒前
无尘发布了新的文献求助10
9秒前
10秒前
shjyang完成签到,获得积分0
12秒前
18秒前
Hello应助幸福大白采纳,获得10
20秒前
王蒙发布了新的文献求助10
23秒前
24秒前
luwei发布了新的文献求助10
25秒前
希望天下0贩的0应助tttt采纳,获得10
30秒前
努力的安子完成签到,获得积分10
31秒前
31秒前
32秒前
34秒前
幸福大白发布了新的文献求助10
34秒前
嗯哼应助科研通管家采纳,获得20
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
所所应助科研通管家采纳,获得10
36秒前
Owen应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
酷波er应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
37秒前
37秒前
李健的小迷弟应助llz采纳,获得10
37秒前
47秒前
Gary完成签到,获得积分10
47秒前
48秒前
50秒前
luwei完成签到,获得积分10
51秒前
52秒前
淑芬完成签到,获得积分10
53秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111269
求助须知:如何正确求助?哪些是违规求助? 2761459
关于积分的说明 7666105
捐赠科研通 2416559
什么是DOI,文献DOI怎么找? 1282569
科研通“疑难数据库(出版商)”最低求助积分说明 619038
版权声明 599491