Raman spectroscopy combined with convolutional neural network for the sub-types classification of breast cancer and critical feature visualization

卷积神经网络 可视化 计算机科学 模式识别(心理学) 乳腺癌 人工智能 指纹(计算) 支持向量机 人工神经网络 数据挖掘 癌症 医学 内科学
作者
Juan Li,Xiaoting Wang,Shungeng Min,Jingjing Xia,Jinyao Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:255: 108361-108361 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108361
摘要

Raman spectroscopy has emerged as an effective technique that can be used for noninvasive breast cancer analysis. However, the current Raman prediction models fail to cover all the molecular sub-types of breast cancer, and lack the visualization of the model. Using Raman spectroscopy combined with convolutional neural network (CNN) to construct a prediction model for the existing known molecular sub-types of breast cancer, and selected critical peaks through visualization strategies, so as to achieve the purpose of mining specific biomarker information. Optimizing network parameters with the help of sparrow search algorithm (SSA) for the multiple parameters in the CNN to improve the prediction performance of the model. To avoid the contingency of the results, multiple sets of data were generated through Monte Carlo sampling and used to train the model, thereby improving the credibility of the results. Based on the accurate prediction of the model, the spectral regions that contributed to the classification were visualized using Gradient-weighted Class Activation Mapping (Grad-CAM), achieving the goal of visualizing characteristic peaks. Compared with other algorithms, optimized CNN could obtain the highest accuracy and lowest standard error. And there was no significant difference between using full spectra and fingerprint regions (within 2%), indicating that the fingerprint region provided the most contribution in classifying sub-types. Based on the classification results from the fingerprint region, the model performances about various sub-types were as follows: CNN (95.34%±2.18%)>SVM(94.90%±1.88%)>PLS-DA(94.52%±2.22%)> KNN (80.00%±5.27%). The critical features visualized by Grad-CAM could match well with IHC information, allowing for a more distinct differentiation of sub-types in their spatial positions. Raman spectroscopy combined with CNN could achieve accurate and rapid identification of breast cancer molecular sub-types. Proposed visualization strategy could be proved from biochemistry information and spatial location, demonstrated that the strategy might be used for the mining of biomarkers in future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lala完成签到,获得积分10
刚刚
HJBF666完成签到 ,获得积分10
刚刚
苗亦巧发布了新的文献求助10
1秒前
Ringo完成签到 ,获得积分10
2秒前
3秒前
we1light应助123hu采纳,获得10
3秒前
4秒前
dagongren完成签到,获得积分10
5秒前
5秒前
6秒前
peanuttt完成签到,获得积分10
6秒前
6秒前
nana完成签到,获得积分10
6秒前
桐桐应助wendy采纳,获得10
7秒前
酷波er应助Nimnse采纳,获得10
7秒前
7秒前
深情夏彤发布了新的文献求助10
7秒前
国色不染尘完成签到,获得积分10
8秒前
9秒前
陈影发布了新的文献求助10
10秒前
10秒前
黄姗姗发布了新的文献求助10
11秒前
苗亦巧完成签到,获得积分10
11秒前
peanuttt发布了新的文献求助10
11秒前
温暖灵波完成签到 ,获得积分10
12秒前
活力成败完成签到,获得积分10
12秒前
yunqing发布了新的文献求助10
12秒前
13秒前
123hu完成签到,获得积分20
13秒前
13秒前
今后应助mirror采纳,获得10
15秒前
开心的访云完成签到,获得积分10
16秒前
发篇Sci不过分吧完成签到,获得积分20
16秒前
kook发布了新的文献求助10
18秒前
18秒前
CHN151发布了新的文献求助10
19秒前
wjy关闭了wjy文献求助
19秒前
orixero应助你没放假采纳,获得10
19秒前
斯文无敌完成签到,获得积分10
21秒前
赘婿应助balabala采纳,获得10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756737
求助须知:如何正确求助?哪些是违规求助? 3300155
关于积分的说明 10112592
捐赠科研通 3014665
什么是DOI,文献DOI怎么找? 1655622
邀请新用户注册赠送积分活动 790048
科研通“疑难数据库(出版商)”最低求助积分说明 753552