PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications

计算机科学 词汇分析 水准点(测量) 人工智能 安全性令牌 自然语言处理 词(群论) 蛋白质测序 源代码 机器学习 肽序列 程序设计语言 生物 遗传学 语言学 哲学 计算机安全 大地测量学 基因 地理
作者
Yang Tan,Mingchen Li,Ziyi Zhou,Pan Tan,Huiqun Yu,Guisheng Fan,Hong Liang
出处
期刊:Journal of Cheminformatics [Springer Nature]
卷期号:16 (1) 被引量:4
标识
DOI:10.1186/s13321-024-00884-3
摘要

Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining . SCIENTIFIC CONTRIBUTION: This study introduces advanced protein sequence tokenization analysis, leveraging the byte-pair-encoding algorithm and unigram. By recognizing frequently occurring combinations of amino acids as single tokens, our proposed method enhances the performance of PLMs on downstream tasks. Additionally, we present PETA, a new comprehensive benchmark for the systematic evaluation of PLMs, demonstrating that vocabularies of 50 and 200 elements offer optimal performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的兔子完成签到,获得积分10
刚刚
bkagyin应助科研通管家采纳,获得20
刚刚
哎哟应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
1秒前
cc完成签到,获得积分10
1秒前
zqzqz完成签到,获得积分10
2秒前
2秒前
喜气洋洋发布了新的文献求助10
2秒前
James发布了新的文献求助10
3秒前
和谐胡萝卜完成签到,获得积分10
4秒前
cocolu应助CCC采纳,获得20
4秒前
5秒前
5秒前
6秒前
小二郎应助Xwenhui采纳,获得10
6秒前
7秒前
英俊的铭应助Dean采纳,获得10
8秒前
打打应助小巧的向露采纳,获得10
8秒前
9秒前
Trevino应助微尘采纳,获得10
10秒前
zhou发布了新的文献求助10
10秒前
研友_r8YKvn完成签到,获得积分10
11秒前
Setsail24k发布了新的文献求助10
11秒前
咯咯发布了新的文献求助10
12秒前
Corn_Dog发布了新的文献求助10
12秒前
曾照准完成签到,获得积分10
13秒前
yyg完成签到,获得积分20
14秒前
慕青应助木木采纳,获得10
14秒前
小陈爱科研完成签到,获得积分10
14秒前
16秒前
18秒前
18秒前
18秒前
18秒前
熊熊爱球球完成签到,获得积分10
18秒前
zhou完成签到,获得积分10
19秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392438
求助须知:如何正确求助?哪些是违规求助? 3003056
关于积分的说明 8807330
捐赠科研通 2689817
什么是DOI,文献DOI怎么找? 1473309
科研通“疑难数据库(出版商)”最低求助积分说明 681528
邀请新用户注册赠送积分活动 674351