Prediction of the minimum miscibility pressure for CO2 flooding based on a physical information neural network algorithm

人工神经网络 相关系数 算法 流离失所(心理学) 催交 计算机科学 提高采收率 石油工程 机器学习 地质学 工程类 心理学 心理治疗师 系统工程
作者
Bowen Qin,Xing Cai,Peng Ni,Yizhong Zhang,Maolin Zhang,Chenxi Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6a77
摘要

Abstract The minimum miscibility pressure (MMP) is a crucial parameter in assessing the miscibility of CO2 displacement and evaluating the effectiveness of oil displacement. Traditional methods for calculating MMP are intricate and time-consuming, involving numerous related parameters. Therefore, precise and efficient determination of MMP is highly significant in the development of CO2-driven reservoirs. This study first utilized the Pearson correlation coefficient to analyse the correlation factor mechanism of 36 sets of fine-tube experimental data. Subsequently, the physical information neural network (PINN) prediction model was employed with reservoir temperature, crude oil composition, and injected gas type as input parameters. The PRI state equation and Glaso correlation equation drove the model, with parameter optimization and training conducted under both physical and data driving. The model demonstrates high prediction accuracy and strong generalization ability. Finally, Validation of the model was performed using fine-tube experimental data from 5 other wells, revealing a relatively small relative deviation between calculated and experimental values, with an average coefficient of determination of 0.95 and an average relative error of 4.42%. The prediction accuracy was improved by about 75% compared to other machine learning algorithms. This model holds potential for application in on-site reservoir development, enhancing the measurement accuracy of the minimum miscible pressure of pure CO2 flooding, greatly shortening the design cycle of reservoir development, expediting the process of reservoir development, and providing technical guidance for improving oil and gas recovery and pure CO2 flooding exploration and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
曾经书南发布了新的文献求助10
刚刚
嘻嘻哈哈应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
1秒前
Lengbo发布了新的文献求助10
2秒前
LJ完成签到,获得积分10
2秒前
xxxxx完成签到,获得积分10
2秒前
2秒前
如果发布了新的文献求助10
2秒前
dal完成签到 ,获得积分10
3秒前
3秒前
3秒前
biubiu26发布了新的文献求助10
4秒前
闪闪魔镜发布了新的文献求助10
4秒前
4秒前
elous发布了新的文献求助10
5秒前
LJ发布了新的文献求助10
6秒前
6秒前
7秒前
502504811发布了新的文献求助10
7秒前
7秒前
8秒前
深情安青应助hush采纳,获得10
8秒前
孙涛发布了新的文献求助10
8秒前
文武兼备发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265116
求助须知:如何正确求助?哪些是违规求助? 4425209
关于积分的说明 13775716
捐赠科研通 4300491
什么是DOI,文献DOI怎么找? 2359831
邀请新用户注册赠送积分活动 1355852
关于科研通互助平台的介绍 1317181