缝隙连接
诱导多能干细胞
心肌病
基因敲除
生物医学工程
医学
细胞培养
生物
细胞生物学
内科学
心力衰竭
细胞内
生物化学
胚胎干细胞
遗传学
基因
作者
Wenkun Dou,Guanqiao Shan,Qili Zhao,Manpreet Malhi,Aojun Jiang,Zhuoran Zhang,Andrés González-Guerra,Shaojie Fu,Junhui Law,Robert M. Hamilton,Juan A. Bernal,Binbin Ying,Yu Sun,Jason T. Maynes
出处
期刊:Science robotics
[American Association for the Advancement of Science (AAAS)]
日期:2024-10-23
卷期号:9 (95)
标识
DOI:10.1126/scirobotics.adm8233
摘要
Arrhythmogenic cardiomyopathy (ACM) is a leading cause of sudden cardiac death among young adults. Aberrant gap junction remodeling has been linked to disease-causative mutations in plakophilin-2 ( PKP2 ). Although gap junctions are a key therapeutic target, measurement of gap junction function in preclinical disease models is technically challenging. To quantify gap junction function with high precision and high consistency, we developed a robotic cell manipulation system with visual feedback from digital holographic microscopy for three-dimensional and label-free imaging of human induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs). The robotic system can accurately determine the dynamic height changes in the cells’ contraction and resting phases, microinject drug-treated healthy and diseased iPSC-CMs in their resting phase with constant injection depth across all cells, and deposit a membrane-impermeable dye that solely diffuses between cells through gap junctions for measuring the gap junction diffusion function. The robotic system was applied toward a targeted drug screen to identify gap junction modulators and potential therapeutics for ACM. Five compounds were found to dose-dependently enhance gap junction permeability in cardiomyocytes with PKP2 knockdown. In addition, PCO 400 (pinacidil) reduced beating irregularity in a mouse model of ACM expressing mutant PKP2 (R735X). These results highlight the utility of the robotic cell manipulation system to efficiently assess gap junction function in a relevant preclinical disease model, thus providing a technique to advance drug discovery for ACM and other gap junction–mediated diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI