Configurational Isomerization‐Induced Orientation Switching: Non‐Fused Ring Dipodal Phosphonic Acids as Hole‐Extraction Layers for Efficient Organic Solar Cells

异构化 萃取(化学) 材料科学 戒指(化学) 方向(向量空间) 化学 光化学 催化作用 有机化学 数学 几何学
作者
Lei Zhang,Yuxing Wang,Junjie Wen,Yifan Huang,Jiaxin Gao,Yuxin Duan,Soohyung Park,Woojin Shin,Zaifei Ma,Miao Liu,Sang Wan Cho,Yeonju Park,Young Mee Jung,Hyunbok Lee,Wenxu Liu,Yao Liu
出处
期刊:Angewandte Chemie [Wiley]
卷期号:136 (48)
标识
DOI:10.1002/ange.202408960
摘要

Abstract Phosphonic acid (PA) self‐assembled molecules have recently emerged as efficient hole‐extraction layers (HELs) for organic solar cells (OSCs). However, the structural effects of PAs on their self‐assembly behaviors on indium tin oxide (ITO) and thus photovoltaic performance remain obscure. Herein, we present a novel class of PAs, namely “non‐fused ring dipodal phosphonic acids” (NFR‐DPAs), featuring simple and malleable non‐fused ring backbones and dipodal phosphonic acid anchoring groups. The efficacy of configurational isomerism in modulating the photoelectronic properties and switching molecular orientation of PAs atop electrodes results in distinct substrate surface energy and electronic characteristics. The NFR‐DPA with linear (C 2h symmetry) and brominated backbone exhibits favorable face‐on orientation and enhanced work function modification capability compared to its angular (C 2v symmetry) and non‐brominated counterparts. This makes it versatile HELs in mitigating interfacial resistance for energy barrier‐free hole collection, and affording optimal active layer morphology, which results in an impressive efficiency of 19.11 % with a low voltage loss of 0.52 V for binary OSC devices and an excellent efficiency of 19.66 % for ternary OSC devices. This study presents a new dimension to design PA‐based HELs for high‐performance OSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vision发布了新的文献求助10
1秒前
桑榆非晚完成签到,获得积分10
1秒前
hui完成签到,获得积分20
1秒前
baby的跑男完成签到,获得积分10
1秒前
Faith完成签到,获得积分10
2秒前
2秒前
Mercurius完成签到,获得积分10
3秒前
3秒前
3秒前
ganzhongxin完成签到,获得积分10
3秒前
12356完成签到,获得积分10
3秒前
4秒前
今后应助白华苍松采纳,获得10
4秒前
跳跃乘风发布了新的文献求助20
4秒前
不舍天真发布了新的文献求助20
5秒前
坚强的樱发布了新的文献求助10
5秒前
温暖以蓝发布了新的文献求助10
5秒前
5秒前
wanci应助幸福胡萝卜采纳,获得10
5秒前
5秒前
Ych发布了新的文献求助10
5秒前
gjy完成签到,获得积分10
6秒前
vision完成签到,获得积分10
6秒前
小小发布了新的文献求助10
6秒前
Katie完成签到,获得积分10
6秒前
LT发布了新的文献求助10
6秒前
7秒前
科研人完成签到,获得积分10
7秒前
FashionBoy应助彭彭采纳,获得10
7秒前
赤邪发布了新的文献求助10
8秒前
Owen应助lwei采纳,获得10
8秒前
shelly0621给shelly0621的求助进行了留言
8秒前
青木蓝完成签到,获得积分10
8秒前
8秒前
迅速泽洋完成签到,获得积分10
9秒前
dan1029完成签到,获得积分10
9秒前
小王完成签到,获得积分10
9秒前
李繁蕊发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762