Emerging Research Trends in Artificial Intelligence for Cancer Diagnostic Systems: A Comprehensive Review

人工智能 可解释性 机器学习 计算机科学 深度学习 数据科学 特征选择 大数据 预处理器 数据挖掘
作者
Sagheer Abbas,Muhammad Waqas Asif,Abdur Rehman,Meshal Alharbi,Muhammad Adnan Khan,Nouh Sabri Elmitwally
出处
期刊:Heliyon [Elsevier]
卷期号:10 (17): e36743-e36743 被引量:2
标识
DOI:10.1016/j.heliyon.2024.e36743
摘要

This review article offers a comprehensive analysis of current developments in the application of machine learning for cancer diagnostic systems. The effectiveness of machine learning approaches has become evident in improving the accuracy and speed of cancer detection, addressing the complexities of large and intricate medical datasets. This review aims to evaluate modern machine learning techniques employed in cancer diagnostics, covering various algorithms, including supervised and unsupervised learning, as well as deep learning and federated learning methodologies. Data acquisition and preprocessing methods for different types of data, such as imaging, genomics, and clinical records, are discussed. The paper also examines feature extraction and selection techniques specific to cancer diagnosis. Model training, evaluation metrics, and performance comparison methods are explored. Additionally, the review provides insights into the applications of machine learning in various cancer types and discusses challenges related to dataset limitations, model interpretability, multi-omics integration, and ethical considerations. The emerging field of explainable artificial intelligence (XAI) in cancer diagnosis is highlighted, emphasizing specific XAI techniques proposed to improve cancer diagnostics. These techniques include interactive visualization of model decisions and feature importance analysis tailored for enhanced clinical interpretation, aiming to enhance both diagnostic accuracy and transparency in medical decision-making. The paper concludes by outlining future directions, including personalized medicine, federated learning, deep learning advancements, and ethical considerations. This review aims to guide researchers, clinicians, and policymakers in the development of efficient and interpretable machine learning-based cancer diagnostic systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
容我想想完成签到,获得积分10
刚刚
CodeCraft应助哼哼采纳,获得10
1秒前
笑点低的傲白完成签到,获得积分10
2秒前
爱静静应助wz采纳,获得10
2秒前
2秒前
孤独豪英发布了新的文献求助10
4秒前
学无止境完成签到,获得积分10
4秒前
虚心橘子完成签到,获得积分10
4秒前
Di完成签到 ,获得积分10
5秒前
无妨发布了新的文献求助10
6秒前
7秒前
好好完成签到,获得积分10
7秒前
7秒前
ddd完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
bkagyin应助无妨采纳,获得10
9秒前
思源应助小走采纳,获得10
9秒前
哼哼完成签到,获得积分10
9秒前
Ricarvi9发布了新的文献求助50
10秒前
杏林仁里关注了科研通微信公众号
10秒前
FashionBoy应助眼睛大怀曼采纳,获得10
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
yyan发布了新的文献求助10
13秒前
13秒前
lapidary发布了新的文献求助10
14秒前
哼哼发布了新的文献求助10
14秒前
无妨完成签到,获得积分10
14秒前
华仔应助sssciii采纳,获得10
14秒前
14秒前
缥缈丹萱完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325