MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation

分割 计算机科学 人工智能 编码器 计算机视觉 医学影像学 图像分割 模态(人机交互) 模式识别(心理学) 操作系统
作者
Cheng Chen,Juzheng Miao,Dufan Wu,Aoxiao Zhong,Zhiling Yan,Sekeun Kim,Jiang Hu,Zhengliang Liu,Lichao Sun,Xiang Li,Tianming Liu,Pheng‐Ann Heng,Quanzheng Li
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:98: 103310-103310 被引量:19
标识
DOI:10.1016/j.media.2024.103310
摘要

The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM's performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM's pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM's pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心的小懒虫完成签到,获得积分10
2秒前
完美世界应助刘肉干采纳,获得10
2秒前
陶ni吉吉完成签到,获得积分10
4秒前
共享精神应助mingjingbingying采纳,获得10
6秒前
7秒前
薰硝壤应助傲娇的睫毛膏采纳,获得10
8秒前
8秒前
研友_VZG7GZ应助穆一手采纳,获得10
9秒前
欣慰碧琴完成签到,获得积分10
10秒前
善学以致用应助刚好采纳,获得10
10秒前
郜雨寒发布了新的文献求助10
11秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
12秒前
WW完成签到,获得积分20
12秒前
12秒前
小晋发布了新的文献求助10
12秒前
14秒前
15秒前
Jian发布了新的文献求助10
17秒前
12345发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
19秒前
20秒前
21秒前
务实妖妖发布了新的文献求助10
23秒前
穆一手发布了新的文献求助10
23秒前
蓝毛衣完成签到 ,获得积分10
24秒前
24秒前
灵巧墨镜完成签到,获得积分10
24秒前
包容妙竹发布了新的文献求助10
25秒前
chydlbb发布了新的文献求助10
27秒前
灵巧墨镜发布了新的文献求助10
27秒前
29秒前
在水一方应助不想说话采纳,获得10
30秒前
HZW完成签到,获得积分10
30秒前
34秒前
36秒前
务实妖妖完成签到,获得积分10
37秒前
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141296
求助须知:如何正确求助?哪些是违规求助? 2792352
关于积分的说明 7802183
捐赠科研通 2448490
什么是DOI,文献DOI怎么找? 1302608
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237