MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation

分割 计算机科学 人工智能 编码器 计算机视觉 医学影像学 图像分割 模态(人机交互) 模式识别(心理学) 操作系统
作者
Cheng Chen,Juzheng Miao,Dufan Wu,Aoxiao Zhong,Zhiling Yan,Sekeun Kim,Jiang Hu,Zhengliang Liu,Lichao Sun,Xiang Li,Tianming Liu,Pheng‐Ann Heng,Quanzheng Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103310-103310 被引量:45
标识
DOI:10.1016/j.media.2024.103310
摘要

The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM's performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM's pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM's pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助10
1秒前
醉熏的坤完成签到,获得积分10
2秒前
爆米花应助Eternitymaria采纳,获得10
2秒前
3秒前
zhangpeng完成签到,获得积分10
4秒前
余111发布了新的文献求助10
4秒前
爱笑的幻姬完成签到,获得积分10
6秒前
NexusExplorer应助在途中采纳,获得10
6秒前
竹外桃花发布了新的文献求助10
6秒前
李雨珍应助雪山飞龙采纳,获得10
7秒前
7秒前
XM发布了新的文献求助10
9秒前
以筱完成签到,获得积分10
9秒前
迷人觅山发布了新的文献求助10
9秒前
11秒前
归陌完成签到 ,获得积分10
12秒前
15秒前
辣辣完成签到 ,获得积分10
15秒前
Eternitymaria发布了新的文献求助10
15秒前
wanci应助风铃鸟采纳,获得10
16秒前
16秒前
18秒前
英俊的铭应助捏捏猫猫采纳,获得10
18秒前
SciGPT应助余111采纳,获得10
18秒前
以筱发布了新的文献求助10
23秒前
笑点低的傲白完成签到,获得积分10
23秒前
务实老虎完成签到,获得积分10
24秒前
24秒前
24秒前
Lucas应助shinn采纳,获得10
25秒前
从容道罡完成签到,获得积分10
25秒前
27秒前
28秒前
小蘑菇应助李雨珍采纳,获得10
29秒前
我的山本发布了新的文献求助10
30秒前
猫猫侠发布了新的文献求助10
30秒前
流星完成签到,获得积分10
32秒前
Much发布了新的文献求助10
32秒前
33秒前
严究生完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498