SOD-YOLO: Small-Object-Detection Algorithm Based on Improved YOLOv8 for UAV Images

计算机科学 计算机视觉 人工智能 遥感 地质学
作者
Yangang Li,Qi Li,Jie Pan,Ying Zhou,Hongliang Zhu,Hongwei Wei,Chong Liu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 3057-3057 被引量:16
标识
DOI:10.3390/rs16163057
摘要

The rapid development of unmanned aerial vehicle (UAV) technology has contributed to the increasing sophistication of UAV-based object-detection systems, which are now extensively utilized in civilian and military sectors. However, object detection from UAV images has numerous challenges, including significant variations in the object size, changing spatial configurations, and cluttered backgrounds with multiple interfering elements. To address these challenges, we propose SOD-YOLO, an innovative model based on the YOLOv8 model, to detect small objects in UAV images. The model integrates the receptive field convolutional block attention module (RFCBAM) in the backbone network to perform downsampling, improving feature extraction efficiency and mitigating the spatial information sparsity caused by downsampling. Additionally, we developed a novel neck architecture called the balanced spatial and semantic information fusion pyramid network (BSSI-FPN) designed for multi-scale feature fusion. The BSSI-FPN effectively balances spatial and semantic information across feature maps using three primary strategies: fully utilizing large-scale features, increasing the frequency of multi-scale feature fusion, and implementing dynamic upsampling. The experimental results on the VisDrone2019 dataset demonstrate that SOD-YOLO-s improves the mAP50 indicator by 3% compared to YOLOv8s while reducing the number of parameters and computational complexity by 84.2% and 30%, respectively. Compared to YOLOv8l, SOD-YOLO-l improves the mAP50 indicator by 7.7% and reduces the number of parameters by 59.6%. Compared to other existing methods, SODA-YOLO-l achieves the highest detection accuracy, demonstrating the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上鑫鹏完成签到,获得积分10
刚刚
西门子云发布了新的文献求助10
1秒前
2秒前
zhangyu应助豆豆采纳,获得10
3秒前
Zjx关闭了Zjx文献求助
6秒前
9秒前
大L完成签到,获得积分10
10秒前
aaaa完成签到,获得积分10
11秒前
子訡发布了新的文献求助10
13秒前
14秒前
16秒前
ZZY完成签到,获得积分10
16秒前
着急的千山完成签到 ,获得积分10
17秒前
慕青应助等风吹采纳,获得10
18秒前
zhangyu应助豆豆采纳,获得10
18秒前
xiangyang完成签到,获得积分10
18秒前
酷酷小子发布了新的文献求助10
18秒前
和谐的以南完成签到,获得积分10
19秒前
大L发布了新的文献求助10
23秒前
000完成签到,获得积分10
27秒前
奥利奥发布了新的文献求助10
29秒前
NexusExplorer应助起名字好难采纳,获得10
29秒前
健哥发布了新的文献求助20
30秒前
165410203读书周完成签到,获得积分10
30秒前
31秒前
31秒前
等风吹发布了新的文献求助10
35秒前
奥利奥完成签到,获得积分10
36秒前
36秒前
111发布了新的文献求助30
36秒前
mmr发布了新的文献求助30
36秒前
36秒前
南桥发布了新的文献求助10
39秒前
40秒前
41秒前
41秒前
SciGPT应助男子无才便是德采纳,获得10
43秒前
鲁卓林完成签到,获得积分10
43秒前
Xiong发布了新的文献求助10
44秒前
Choi完成签到,获得积分10
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662