SOD-YOLO: Small-Object-Detection Algorithm Based on Improved YOLOv8 for UAV Images

计算机科学 计算机视觉 人工智能 遥感 地质学
作者
Yangang Li,Qi Li,Jie Pan,Ying Zhou,Hongliang Zhu,Hongwei Wei,Chong Liu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (16): 3057-3057 被引量:80
标识
DOI:10.3390/rs16163057
摘要

The rapid development of unmanned aerial vehicle (UAV) technology has contributed to the increasing sophistication of UAV-based object-detection systems, which are now extensively utilized in civilian and military sectors. However, object detection from UAV images has numerous challenges, including significant variations in the object size, changing spatial configurations, and cluttered backgrounds with multiple interfering elements. To address these challenges, we propose SOD-YOLO, an innovative model based on the YOLOv8 model, to detect small objects in UAV images. The model integrates the receptive field convolutional block attention module (RFCBAM) in the backbone network to perform downsampling, improving feature extraction efficiency and mitigating the spatial information sparsity caused by downsampling. Additionally, we developed a novel neck architecture called the balanced spatial and semantic information fusion pyramid network (BSSI-FPN) designed for multi-scale feature fusion. The BSSI-FPN effectively balances spatial and semantic information across feature maps using three primary strategies: fully utilizing large-scale features, increasing the frequency of multi-scale feature fusion, and implementing dynamic upsampling. The experimental results on the VisDrone2019 dataset demonstrate that SOD-YOLO-s improves the mAP50 indicator by 3% compared to YOLOv8s while reducing the number of parameters and computational complexity by 84.2% and 30%, respectively. Compared to YOLOv8l, SOD-YOLO-l improves the mAP50 indicator by 7.7% and reduces the number of parameters by 59.6%. Compared to other existing methods, SODA-YOLO-l achieves the highest detection accuracy, demonstrating the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安安安发布了新的文献求助10
1秒前
1秒前
豆芽菜完成签到,获得积分10
2秒前
3秒前
徐志豪发布了新的文献求助10
3秒前
111111发布了新的文献求助10
3秒前
Vater发布了新的文献求助10
4秒前
吃个馍馍完成签到,获得积分10
6秒前
6秒前
李勤_秦礼发布了新的文献求助10
6秒前
lxdfrank发布了新的文献求助10
7秒前
茶茶完成签到,获得积分10
7秒前
细心的凝芙完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
顺利寻真完成签到,获得积分10
10秒前
我是老大应助WangPeidi采纳,获得10
11秒前
小二郎应助无限的绮晴采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
小蒋发布了新的文献求助10
12秒前
彭于晏应助红色小矮人采纳,获得10
13秒前
14秒前
阅遍SCI完成签到,获得积分0
14秒前
小马甲应助吃个馍馍采纳,获得10
15秒前
16秒前
orixero应助訾新玉采纳,获得10
17秒前
岁月轮回发布了新的文献求助10
18秒前
18秒前
111111完成签到,获得积分10
19秒前
22秒前
CodeCraft应助科研圣体采纳,获得10
23秒前
年轻金毛完成签到,获得积分20
24秒前
浮雨微清完成签到,获得积分10
25秒前
Maestro_S发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
慧慧完成签到 ,获得积分10
26秒前
27秒前
无极微光发布了新的文献求助20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031