肝细胞癌
重编程
蛋白激酶B
癌症研究
信号转导
细胞生物学
PI3K/AKT/mTOR通路
化学
生物
生物化学
细胞
作者
Zhongming Bao,Ming Yang,Yunhu Guo,Qi Ge,Huaguo Zhang
标识
DOI:10.1016/j.cellsig.2024.111366
摘要
Metabolic reprogramming has recently been identified as a hallmark of malignancies. The shift from oxidative phosphorylation to glycolysis in hepatocellular carcinoma (HCC) meets the demands of rapid cell growth and provides a microenvironment for tumor progression. This study sought to uncover the function and mechanism of MTFR2 in the metabolic reprogramming of HCC. Elevated MTFR2 expression was associated with poor patient prognosis. Downregulation of MTFR2 blocked malignant behaviors, epithelial-to-mesenchymal transition (EMT), and glycolysis in HCC cells. Nuclear transcription factor Y subunit gamma (NFYC) was also associated with poor patient prognosis, and NFYC bound to the promoter of MTFR2 to activate transcription and promote Akt signaling. The repressive effects of NFYC knockdown on EMT and glycolysis in HCC cells were compromised by MTFR2 overexpression, elicited through the activation of the Akt signaling. Knockdown of NFYC slowed the growth and intrahepatic metastasis in vivo, which was reversed by MTFR2 overexpression. In conclusion, our work shows that activation of MTFR2 by the transcription factor NFYC promotes Akt signaling, thereby potentiating metabolic reprogramming in HCC development. Targeting the NFYC/MTFR2/Akt axis may represent a therapeutic strategy for HCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI