Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boluohu完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
天天开心完成签到 ,获得积分10
8秒前
Sunbrust发布了新的文献求助30
13秒前
张大星完成签到 ,获得积分10
14秒前
16秒前
16秒前
SHF完成签到 ,获得积分10
17秒前
18秒前
liamddd完成签到 ,获得积分10
19秒前
小何发布了新的文献求助10
23秒前
西瓜二郎发布了新的文献求助10
23秒前
哈哈哈66发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
29秒前
34秒前
淡然葶完成签到 ,获得积分10
36秒前
39秒前
Singhi完成签到 ,获得积分10
39秒前
葛优发布了新的文献求助10
41秒前
42秒前
归尘发布了新的文献求助10
42秒前
43秒前
深情安青应助阔达苡采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
47秒前
共享精神应助科研通管家采纳,获得10
47秒前
浮游应助科研通管家采纳,获得10
47秒前
斯文败类应助科研通管家采纳,获得10
47秒前
大模型应助科研通管家采纳,获得10
47秒前
传奇3应助科研通管家采纳,获得10
47秒前
个性的荆应助科研通管家采纳,获得10
47秒前
wy.he应助科研通管家采纳,获得10
48秒前
搜集达人应助科研通管家采纳,获得10
48秒前
SciGPT应助科研通管家采纳,获得10
48秒前
tuanheqi应助科研通管家采纳,获得150
48秒前
个性的荆应助科研通管家采纳,获得10
48秒前
iNk应助科研通管家采纳,获得10
48秒前
浮游应助科研通管家采纳,获得10
48秒前
natmed应助科研通管家采纳,获得10
48秒前
个性的荆应助科研通管家采纳,获得10
48秒前
彭于晏应助科研通管家采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652866
求助须知:如何正确求助?哪些是违规求助? 4788617
关于积分的说明 15061919
捐赠科研通 4811370
什么是DOI,文献DOI怎么找? 2573877
邀请新用户注册赠送积分活动 1529653
关于科研通互助平台的介绍 1488381