Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
瓜6完成签到,获得积分10
1秒前
1秒前
威武雪兰完成签到,获得积分10
1秒前
星辰大海应助11采纳,获得10
1秒前
令狐发布了新的文献求助10
1秒前
lpk发布了新的文献求助10
1秒前
依米医意发布了新的文献求助10
2秒前
2秒前
ZZY发布了新的文献求助10
2秒前
一灯大师发布了新的文献求助10
2秒前
yunyun发布了新的文献求助10
2秒前
ZeKaWa应助FLZLC采纳,获得10
3秒前
所所应助李乐乐乐乐采纳,获得10
3秒前
Hhhhh完成签到,获得积分10
3秒前
嗯嗯哈哈完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助20
4秒前
4秒前
4秒前
杨雨馨发布了新的文献求助10
5秒前
王莹发布了新的文献求助10
5秒前
852应助lll采纳,获得10
6秒前
clark完成签到,获得积分10
6秒前
6秒前
6秒前
赘婿应助晨晨采纳,获得10
6秒前
6秒前
Hello应助Chang采纳,获得10
7秒前
navvv完成签到,获得积分10
7秒前
武宗文发布了新的文献求助10
7秒前
000完成签到 ,获得积分10
7秒前
FashionBoy应助哎呀采纳,获得10
8秒前
8秒前
8秒前
灵巧的孤容完成签到,获得积分10
9秒前
9秒前
何甜完成签到,获得积分10
9秒前
辛勤依凝发布了新的文献求助10
9秒前
嗯嗯哈哈发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401