Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MoNeng发布了新的文献求助10
刚刚
1秒前
月半完成签到,获得积分10
1秒前
2秒前
VDC应助karstbing采纳,获得30
2秒前
浮游应助草中有粑粑采纳,获得10
2秒前
Orange应助冰激凌采纳,获得10
3秒前
小康完成签到,获得积分10
3秒前
4秒前
沉静弘文完成签到 ,获得积分10
4秒前
充电宝应助王也采纳,获得10
5秒前
linclee完成签到,获得积分10
6秒前
6秒前
佳期发布了新的文献求助10
6秒前
兜兜完成签到 ,获得积分10
7秒前
目m完成签到,获得积分10
7秒前
李斯濛完成签到,获得积分10
8秒前
pangkuan发布了新的文献求助10
11秒前
16秒前
18秒前
英俊的铭应助shuqi采纳,获得10
19秒前
21秒前
搞怪人雄完成签到,获得积分10
21秒前
ceeray23应助坦率的草丛采纳,获得10
22秒前
23秒前
24秒前
orixero应助理理采纳,获得10
25秒前
25秒前
沉默是金发布了新的文献求助10
26秒前
26秒前
26秒前
蒲云海发布了新的文献求助10
27秒前
科研通AI6应助熙辞辞采纳,获得10
28秒前
30秒前
30秒前
二饼发布了新的文献求助10
32秒前
xhnmdl发布了新的文献求助10
33秒前
大龙哥886应助karstbing采纳,获得30
33秒前
35秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478