Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小布丁完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
张张完成签到,获得积分10
3秒前
4秒前
4秒前
小布丁发布了新的文献求助10
4秒前
GinaLundhild06应助陌然浅笑采纳,获得10
4秒前
在水一方应助luxiuzhen采纳,获得10
4秒前
5秒前
6秒前
呜呜呜呜发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
ken发布了新的文献求助10
7秒前
大模型应助李李李采纳,获得10
8秒前
sn完成签到,获得积分10
8秒前
yy应助张张采纳,获得20
9秒前
超大鹅发布了新的文献求助10
9秒前
深情安青应助寒冬采纳,获得10
11秒前
飞123发布了新的文献求助10
11秒前
夏冰发布了新的文献求助10
11秒前
柠檬柠檬发布了新的文献求助10
11秒前
脑洞疼应助Feathamity采纳,获得10
11秒前
闪闪无敌发布了新的文献求助10
11秒前
晚灯君完成签到 ,获得积分0
12秒前
赘婿应助卧镁铀钳采纳,获得10
12秒前
素素发布了新的文献求助10
14秒前
14秒前
上官若男应助心秦采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
所所应助晴云采纳,获得10
16秒前
呜呜呜呜完成签到,获得积分20
16秒前
在水一方应助wenwliu采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325