Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liang白开完成签到,获得积分10
刚刚
科研通AI6应助加菲猫采纳,获得10
1秒前
彭于晏应助猪猪hero采纳,获得10
2秒前
r41r32完成签到 ,获得积分10
2秒前
3秒前
Spike发布了新的文献求助10
4秒前
凌小满发布了新的文献求助60
5秒前
永字号发布了新的文献求助10
5秒前
雪白的真完成签到,获得积分20
6秒前
6秒前
风中无血发布了新的文献求助10
6秒前
刘子豪发布了新的文献求助10
6秒前
闪闪柔完成签到,获得积分10
9秒前
璐璐完成签到,获得积分10
9秒前
10秒前
10秒前
豆儿嘚小豆儿完成签到,获得积分10
11秒前
妮妮完成签到 ,获得积分10
11秒前
李园园完成签到 ,获得积分10
12秒前
赘婿应助认真手机采纳,获得10
12秒前
12秒前
wangxw发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
冷艳的纸鹤完成签到,获得积分10
13秒前
14秒前
14秒前
17秒前
科目三应助害羞采萱采纳,获得10
17秒前
小二郎应助风中无血采纳,获得10
17秒前
可爱的函函应助丁真真采纳,获得10
18秒前
19秒前
19秒前
喜多发布了新的文献求助10
20秒前
李爱国应助Windycityguy采纳,获得10
20秒前
Jasper应助暴躁的咖啡采纳,获得10
20秒前
林夕发布了新的文献求助20
21秒前
美好蝴蝶发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465399
求助须知:如何正确求助?哪些是违规求助? 4569719
关于积分的说明 14320701
捐赠科研通 4496152
什么是DOI,文献DOI怎么找? 2463156
邀请新用户注册赠送积分活动 1452110
关于科研通互助平台的介绍 1427270