亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE Publishing]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
贺俊龙发布了新的文献求助10
13秒前
Owen应助靓丽的魔镜采纳,获得10
17秒前
LUYAO1完成签到 ,获得积分10
18秒前
25秒前
Auralis完成签到 ,获得积分10
28秒前
Tiamo发布了新的文献求助10
29秒前
飞翔的荷兰人完成签到,获得积分10
32秒前
papi完成签到 ,获得积分10
38秒前
48秒前
852应助江锦雯采纳,获得10
50秒前
Ansel_Schneider完成签到,获得积分10
53秒前
邓明发布了新的文献求助10
53秒前
tinbenny发布了新的文献求助10
59秒前
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
papi发布了新的文献求助10
1分钟前
糊涂的剑完成签到,获得积分20
1分钟前
1分钟前
1分钟前
糊涂的剑发布了新的文献求助10
1分钟前
邓明完成签到,获得积分10
1分钟前
科研捣蛋鬼完成签到,获得积分10
1分钟前
科研通AI2S应助糊涂的剑采纳,获得10
1分钟前
香蕉觅云应助懒洋洋采纳,获得10
1分钟前
江锦雯发布了新的文献求助10
1分钟前
思源应助tinbenny采纳,获得10
1分钟前
ppl关闭了ppl文献求助
1分钟前
香蕉觅云应助papi采纳,获得10
1分钟前
江锦雯完成签到,获得积分10
1分钟前
小刘完成签到,获得积分10
1分钟前
1分钟前
schuang完成签到,获得积分0
1分钟前
crash发布了新的文献求助10
1分钟前
顾矜应助CX采纳,获得200
2分钟前
crash完成签到,获得积分10
2分钟前
搜集达人应助有趣的银采纳,获得10
2分钟前
2分钟前
SppikeFPS完成签到,获得积分10
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223