Explainable Machine Learning Approach to Prediction of Prolonged Intesive Care Unit Stay in Adult Spinal Deformity Patients: Machine Learning Outperforms Logistic Regression

医学 随机森林 逻辑回归 决策树 重症监护室 接收机工作特性 机器学习 脊柱畸形 人工智能 队列 急诊医学 外科 畸形 重症监护医学 计算机科学 内科学
作者
Bashar Zaidat,Mark Kurapatti,Jonathan S. Gal,Samuel K. Cho,Jun Kim
出处
期刊:Global Spine Journal [SAGE Publishing]
标识
DOI:10.1177/21925682241277771
摘要

Study Design Retrospective cohort study. Objectives Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients. Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater predictive power as traditional statistical methods and follows traditional clinical decision-making processes. Methods Five ML models (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively. 535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide insight into each model’s decision-making process. Results The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the greatest predictors of prolonged ICU stay based on SHAP values. Conclusions We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients. Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential to assist with risk stratification and more effective and cost-efficient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泡泡球完成签到,获得积分10
刚刚
张益达完成签到,获得积分10
刚刚
rinki01发布了新的文献求助10
刚刚
CHEN.CHENG完成签到,获得积分10
1秒前
pcr163应助栀初采纳,获得80
1秒前
Jasper应助南至采纳,获得10
1秒前
优秀的乐曲完成签到,获得积分10
1秒前
小余发布了新的文献求助10
2秒前
Jasper应助kang采纳,获得10
3秒前
山260完成签到 ,获得积分10
3秒前
3秒前
打打应助冷傲的水儿采纳,获得10
4秒前
旺旺小仙贝完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助10
5秒前
芒果好高完成签到,获得积分10
5秒前
6秒前
大个应助Goodenough采纳,获得10
6秒前
wanci应助时安采纳,获得10
7秒前
包钰韬发布了新的文献求助20
7秒前
无略完成签到,获得积分10
7秒前
阿牛完成签到,获得积分10
8秒前
wdy111举报小海狸求助涉嫌违规
9秒前
Star1983发布了新的文献求助10
10秒前
10秒前
大模型应助哇哦采纳,获得10
11秒前
郝好月完成签到,获得积分10
11秒前
mc1220完成签到,获得积分10
11秒前
神勇的晟睿完成签到 ,获得积分10
11秒前
奥特超曼应助LuLan0401采纳,获得10
13秒前
quan发布了新的文献求助10
13秒前
jailbreaker完成签到 ,获得积分0
13秒前
13秒前
彭于彦祖应助田果采纳,获得50
14秒前
马不停蹄完成签到,获得积分10
14秒前
共享精神应助精明一寡采纳,获得10
15秒前
第一步完成签到 ,获得积分10
15秒前
Lin关闭了Lin文献求助
16秒前
赘婿应助封妖妖采纳,获得10
16秒前
Thing完成签到,获得积分10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582