作者
Krzysztof B. Beć,Justyna Grabska,Frank Pfeifer,Heinz W. Siesler,Christian W. Huck
摘要
Contamination by microplastics, a global environmental concern, demands effective monitoring. While current methods focus on characterizing the smallest particles, their low throughput hinders practical assessment. Miniaturized near-infrared (NIR) spectroscopy offers high-throughput capabilities and rapid on-site analysis, potentially filling this gap. However, diverse sensor characteristics result in significant differences among handheld NIR spectrometers. This study characterizes the analytical performance of these instruments for identifying soil microplastics, comparing miniaturized devices MicroNIR 1700ES, NeoSpectra Scanner, microPHAZIR, nanoFTIR-NIR, NIR-S-G1, and SCiO sensor against a reference benchtop instrument, the NIRFlex N-500. Detection of common polymers, ABS, EVAC, HDPE, LDPE, PA6, PMMA, POM, PET, PS, PTFE, and SBR, at low concentrations (0.75 % w/w) was possible without sample preparation. Sensor selection proved crucial; FT instruments N-500 and NeoSpectra Scanner provided the most accurate analysis, while other handheld instruments faced various challenges. Covariance analysis, Principal Component Analysis (PCA), and mid-level data fusion revealed that miniaturized NIR spectrometers can successfully screen microplastics on-site. However, the ability of each sensor to discriminate certain groups of polymers strongly depends on its spectral characteristics. This study demonstrates the importance of sensor selection in the development of portable NIR spectroscopy for environmental monitoring of microplastics.