亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards the definition of a standard in TMS-EEG data preprocessing

预处理器 计算机科学 数据预处理 脑电图 数据挖掘 模式识别(心理学) 人工智能 心理学 神经科学
作者
Adriana Brancaccio,Davide Tabarelli,Agnese Zazio,Giacomo Bertazzoli,Johanna Metsomaa,Ulf Ziemann,Marta Bortoletto,Paolo Belardinelli
出处
期刊:NeuroImage [Elsevier BV]
卷期号:: 120874-120874
标识
DOI:10.1016/j.neuroimage.2024.120874
摘要

Combining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simultaneous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortunately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in the concurrent EEG acquisition. Therefore, a careful but aggressive pre-processing is required to efficiently remove artifacts. Unfortunately, as already reported in the literature, different preprocessing approaches can introduce variability in the results. Here we aim at characterizing the three main TMS-EEG preprocessing pipelines currently available, namely ARTIST (Wu et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR (Mutanen et al., 2018, 2016), providing an insight to researchers who need to choose between different approaches. Differently from previous works, we tested the pipelines using a synthetic TMS-EEG signal with a known ground-truth (the artifacts-free to-be-reconstructed signal). In this way, it was possible to assess the reliability of each pipeline precisely and quantitatively, providing a more robust reference for future research. In summary, we found that all pipelines performed well, but with differences in terms of the spatio-temporal precision of the ground-truth reconstruction. Crucially, the three pipelines impacted differently on the inter-trial variability, with ARTIST introducing inter-trial variability not already intrinsic to the ground-truth signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shareef发布了新的文献求助30
刚刚
麟心牧宇发布了新的文献求助10
2秒前
xl完成签到,获得积分20
4秒前
9秒前
科研龙应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助舒心小海豚采纳,获得10
29秒前
小二郎应助高大的冬萱采纳,获得10
36秒前
39秒前
43秒前
酒渡完成签到,获得积分10
43秒前
哈基米德应助麟心牧宇采纳,获得10
43秒前
43秒前
44秒前
小猪发布了新的文献求助30
47秒前
shoolarli完成签到,获得积分20
47秒前
48秒前
53秒前
shoolarli发布了新的文献求助10
53秒前
53秒前
55秒前
寒江雪发布了新的文献求助10
56秒前
WPF完成签到 ,获得积分10
56秒前
徐1完成签到 ,获得积分10
57秒前
科研通AI6应助shareef采纳,获得10
1分钟前
1分钟前
机智咖啡豆完成签到 ,获得积分10
1分钟前
bonhiver完成签到 ,获得积分10
1分钟前
将将发布了新的文献求助10
1分钟前
酷炫远山完成签到 ,获得积分10
1分钟前
1分钟前
冷酷电脑发布了新的文献求助10
1分钟前
Ffpcjwcx发布了新的文献求助10
1分钟前
ding应助Ffpcjwcx采纳,获得10
1分钟前
万能图书馆应助冷酷电脑采纳,获得10
1分钟前
将将完成签到,获得积分10
1分钟前
1分钟前
ranj完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063599
求助须知:如何正确求助?哪些是违规求助? 4287064
关于积分的说明 13358389
捐赠科研通 4105153
什么是DOI,文献DOI怎么找? 2247853
邀请新用户注册赠送积分活动 1253415
关于科研通互助平台的介绍 1184523