Towards the definition of a standard in TMS-EEG data preprocessing

预处理器 计算机科学 数据预处理 脑电图 数据挖掘 模式识别(心理学) 人工智能 心理学 神经科学
作者
Adriana Brancaccio,Davide Tabarelli,Agnese Zazio,Giacomo Bertazzoli,Johanna Metsomaa,Ulf Ziemann,Marta Bortoletto,Paolo Belardinelli
出处
期刊:NeuroImage [Elsevier BV]
卷期号:: 120874-120874
标识
DOI:10.1016/j.neuroimage.2024.120874
摘要

Combining Non-Invasive Brain Stimulation (NIBS) techniques with the recording of brain electrophysiological activity is an increasingly widespread approach in neuroscience. Particularly successful has been the simultaneous combination of Transcranial Magnetic Stimulation (TMS) and Electroencephalography (EEG). Unfortunately, the strong magnetic pulse required to effectively interact with brain activity inevitably induces artifacts in the concurrent EEG acquisition. Therefore, a careful but aggressive pre-processing is required to efficiently remove artifacts. Unfortunately, as already reported in the literature, different preprocessing approaches can introduce variability in the results. Here we aim at characterizing the three main TMS-EEG preprocessing pipelines currently available, namely ARTIST (Wu et al., 2018), TESA (Rogasch et al., 2017) and SOUND/SSP-SIR (Mutanen et al., 2018, 2016), providing an insight to researchers who need to choose between different approaches. Differently from previous works, we tested the pipelines using a synthetic TMS-EEG signal with a known ground-truth (the artifacts-free to-be-reconstructed signal). In this way, it was possible to assess the reliability of each pipeline precisely and quantitatively, providing a more robust reference for future research. In summary, we found that all pipelines performed well, but with differences in terms of the spatio-temporal precision of the ground-truth reconstruction. Crucially, the three pipelines impacted differently on the inter-trial variability, with ARTIST introducing inter-trial variability not already intrinsic to the ground-truth signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼凡阳发布了新的文献求助10
2秒前
NexusExplorer应助皮崇知采纳,获得10
2秒前
洋洋完成签到,获得积分20
2秒前
丘比特应助方班术采纳,获得10
3秒前
3秒前
3秒前
4秒前
Steve完成签到,获得积分20
4秒前
5秒前
7秒前
chaobada完成签到,获得积分10
8秒前
8秒前
洋洋发布了新的文献求助10
9秒前
夏墨发布了新的文献求助30
9秒前
李健的小迷弟应助xx采纳,获得10
9秒前
小熊完成签到,获得积分10
10秒前
高兴荔枝发布了新的文献求助10
10秒前
清欢完成签到,获得积分10
11秒前
皮崇知发布了新的文献求助10
13秒前
慕青应助小星星采纳,获得50
17秒前
18秒前
eric888应助科研通管家采纳,获得100
18秒前
yydragen应助科研通管家采纳,获得80
18秒前
SciGPT应助科研通管家采纳,获得30
19秒前
所所应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得30
19秒前
852应助科研通管家采纳,获得10
19秒前
64658应助科研通管家采纳,获得10
19秒前
iNk应助科研通管家采纳,获得20
19秒前
64658应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
64658应助科研通管家采纳,获得10
19秒前
64658应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
64658应助科研通管家采纳,获得10
20秒前
情怀应助科研通管家采纳,获得10
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967367
求助须知:如何正确求助?哪些是违规求助? 3512602
关于积分的说明 11164375
捐赠科研通 3247533
什么是DOI,文献DOI怎么找? 1793886
邀请新用户注册赠送积分活动 874741
科研通“疑难数据库(出版商)”最低求助积分说明 804498