亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas

医学 无线电技术 内科学 肿瘤科 表皮生长因子受体 放射科 癌症
作者
Xiaogang Wang,Shaohong Wu,Jiao Ren,Yan Zeng,Lili Guo
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rti.0000000000000817
摘要

Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models’ capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. Materials and Methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR − and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 − and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
8秒前
17秒前
20秒前
21秒前
22秒前
32秒前
36秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
一定能成功!完成签到,获得积分10
43秒前
49秒前
1分钟前
1分钟前
zzzsh发布了新的文献求助10
1分钟前
1分钟前
研友_X894JZ完成签到 ,获得积分10
1分钟前
隐形曼青应助千堆雪claris采纳,获得10
1分钟前
1分钟前
脑洞疼应助要减肥的婷冉采纳,获得10
1分钟前
JamesPei应助jacs111采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
qiu发布了新的文献求助10
1分钟前
jacs111发布了新的文献求助10
1分钟前
茶叶蛋发布了新的文献求助10
1分钟前
2分钟前
2分钟前
qiu完成签到,获得积分10
2分钟前
千堆雪claris完成签到,获得积分10
2分钟前
拼搏萝发布了新的文献求助20
2分钟前
2分钟前
2分钟前
ding应助茶叶蛋采纳,获得30
2分钟前
2分钟前
玄之又玄完成签到,获得积分10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214