Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas

医学 无线电技术 内科学 肿瘤科 表皮生长因子受体 放射科 癌症
作者
Xiaogang Wang,Shaohong Wu,Jiao Ren,Yan Zeng,Lili Guo
出处
期刊:Journal of Thoracic Imaging [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rti.0000000000000817
摘要

Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models’ capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. Materials and Methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR − and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 − and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lz发布了新的文献求助10
1秒前
jasar发布了新的文献求助10
2秒前
kk119完成签到,获得积分10
2秒前
心子吖发布了新的文献求助10
3秒前
Cc发布了新的文献求助10
3秒前
王小丹发布了新的文献求助10
4秒前
无问完成签到,获得积分10
8秒前
YTY完成签到,获得积分10
8秒前
星辰大海应助七七采纳,获得10
8秒前
接心软审稿人完成签到 ,获得积分10
9秒前
啥东西啥发布了新的文献求助10
11秒前
从容芮应助lz采纳,获得10
11秒前
元夕阑珊发布了新的文献求助10
11秒前
在水一方应助chyx采纳,获得10
12秒前
13秒前
tangzelun完成签到,获得积分10
16秒前
huster完成签到,获得积分10
17秒前
帅男发布了新的文献求助10
18秒前
爆米花应助Robe采纳,获得10
18秒前
彭于晏应助心子吖采纳,获得10
19秒前
19秒前
20秒前
21秒前
雪晴完成签到,获得积分20
22秒前
22秒前
22秒前
ronin完成签到,获得积分10
23秒前
24秒前
雪晴发布了新的文献求助10
24秒前
南吕完成签到,获得积分10
25秒前
25秒前
大郎喝药发布了新的文献求助10
26秒前
Mindray发布了新的文献求助10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
28秒前
繁荣的谷蓝完成签到 ,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112