Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas

医学 无线电技术 内科学 肿瘤科 表皮生长因子受体 放射科 癌症
作者
Xiaogang Wang,Shaohong Wu,Jiao Ren,Yan Zeng,Lili Guo
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rti.0000000000000817
摘要

Purpose: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models’ capacities to identify patients who are suitable for TKI-targeted therapy and those with poor prognoses. Materials and Methods: A total of 267 patients with lung adenocarcinomas who underwent genetic testing and noncontrast chest computed tomography from our hospital were retrospectively included. Clinical information and imaging characteristics were gathered, and high-throughput feature acquisition on all defined regions of interest (ROIs) was carried out. We selected features and constructed clinical models, radiomics models, deep learning models, and ensemble models to predict EGFR status with all patients and TP53 status with EGFR-positive patients, respectively. The validity and reliability of each model were expressed as the area under the curve (AUC), sensitivity, specificity, accuracy, precision, and F1 score. Results: We constructed 7 kinds of models for 2 different dichotomies, namely, the clinical model, the radiomics model, the DL model, the rad-clin model, the DL-clin model, the DL-rad model, and the DL-rad-clin model. For EGFR − and EGFR +, the DL-rad-clin model got the highest AUC value of 0.783 (95% CI: 0.677-0.889), followed by the rad-clin model, the DL-clin model, and the DL-rad model. In the group with an EGFR mutation, for TP53 − and TP53 +, the rad-clin model got the highest AUC value of 0.811 (95% CI: 0.651-0.972), followed by the DL-rad-clin model and the DL-rad model. Conclusion: Our progressive binary classification models based on radiomics and deep learning may provide a good reference and complement for the clinical identification of TKI responders and those with poor prognoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIANG完成签到,获得积分10
刚刚
朴素代秋发布了新的文献求助10
1秒前
云峰发布了新的文献求助10
1秒前
1秒前
Cecilia0_0完成签到,获得积分10
1秒前
又壮了发布了新的文献求助20
1秒前
友好的易槐完成签到,获得积分10
3秒前
青山发布了新的文献求助10
3秒前
飘逸凝丝发布了新的文献求助10
3秒前
3秒前
Yddear发布了新的文献求助20
3秒前
3秒前
poletar发布了新的文献求助10
4秒前
EWW发布了新的文献求助20
4秒前
xxw发布了新的文献求助10
4秒前
5秒前
5秒前
一休关注了科研通微信公众号
5秒前
Ivy完成签到,获得积分10
5秒前
6秒前
6秒前
Syyyyy发布了新的文献求助10
7秒前
7秒前
7秒前
华仔应助aa采纳,获得10
7秒前
魁梧的灵安关注了科研通微信公众号
7秒前
7秒前
8秒前
小龙发布了新的文献求助10
8秒前
TTT完成签到,获得积分10
8秒前
yinghua发布了新的文献求助10
8秒前
美好斓发布了新的文献求助10
8秒前
Lisuo应助飞宇采纳,获得20
9秒前
9秒前
鸟史发布了新的文献求助10
10秒前
哇哇哇哇发布了新的文献求助30
11秒前
Haoea发布了新的文献求助10
11秒前
胖头鱼发布了新的文献求助10
11秒前
小新完成签到 ,获得积分20
11秒前
Zx_1993应助念安采纳,获得20
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239828
求助须知:如何正确求助?哪些是违规求助? 4407067
关于积分的说明 13717174
捐赠科研通 4275655
什么是DOI,文献DOI怎么找? 2346104
邀请新用户注册赠送积分活动 1343227
关于科研通互助平台的介绍 1301291