Bias Adjustment of Long‐Term (1961–2020) Daily Precipitation for China

期限(时间) 降水 中国 环境科学 气候学 地质学 气象学 地理 物理 考古 量子力学
作者
Yanni Zhao,Rensheng Chen,Zhiwei Yang,Yiwen Liu,Linlin Zhao,Yong Yang,Lei Wang
出处
期刊:Earth and Space Science [American Geophysical Union]
卷期号:11 (7)
标识
DOI:10.1029/2024ea003622
摘要

Abstract The observation errors in precipitation gauges contribute to diminished precision in precipitation data sets. To reduce the impact of these errors, the World Meteorological Organization Solid Precipitation Intercomparison Experiments recommended the Double Fence Intercomparison Reference as a reference standard for precipitation measurements. This study proposed a new rain, snow, and mixed precipitation adjustment method for national standard precipitation gauges, using DFIR‐measured precipitation as the standard values. This method was used to adjust for systematic errors, including wind‐induced errors, wetting loss, and trace precipitation, in precipitation data collected by 785 stations in China from 1961 to 2020. After bias adjustment, the annual precipitation increased by 6.1–177.9 mm (with an average of 52.7 mm), accounting for 3.3%–52.1% (8.9%) of the total precipitation. The average annual error‐adjustment amounts for wind‐induced error, wetting loss, and trace precipitation were 21.9 (3.6% of total precipitation), 26.6 (4.7%), and 4.2 mm (1.3%), respectively. The adjustment percentage in winter was higher than that in summer, with the high‐adjusted‐percentage regions predominantly located in areas with drought, high proportion of snowfall, and strong wind speeds. Additionally, the annual average error‐adjustment amounts for rain, snow, and mixed precipitation respectively accounted for 5.2%, 38.2%, and 17.1% of their corresponding total amounts, indicating the significance of bias adjustment, particularly for snow and mixed precipitation, in the northern and Qinghai‐Tibet Plateau regions. Therefore, bias adjustment is necessary to enhance the accuracy of the precipitation data set in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
byby完成签到,获得积分10
刚刚
风起枫落完成签到 ,获得积分10
刚刚
卜天亦完成签到,获得积分0
1秒前
量子星尘发布了新的文献求助150
1秒前
勤恳曼卉完成签到,获得积分10
1秒前
蟹老板完成签到,获得积分10
1秒前
科研通AI5应助十月天秤采纳,获得30
2秒前
王俊永发布了新的文献求助10
4秒前
一见憘完成签到 ,获得积分10
5秒前
6秒前
笨笨慕山完成签到,获得积分10
6秒前
阿曾完成签到 ,获得积分10
7秒前
松鼠15111完成签到,获得积分10
9秒前
哈哈李完成签到,获得积分10
10秒前
隐形的非笑完成签到 ,获得积分10
10秒前
七八九完成签到 ,获得积分10
11秒前
11秒前
LCCX完成签到 ,获得积分10
12秒前
丁丁完成签到 ,获得积分10
12秒前
陆枝完成签到,获得积分10
12秒前
王俊永完成签到,获得积分10
13秒前
木康薛完成签到,获得积分10
14秒前
14秒前
14秒前
甜蜜的水香完成签到,获得积分10
14秒前
15秒前
不吐泡的玻璃鱼完成签到,获得积分10
16秒前
wst1988完成签到,获得积分10
16秒前
xmuchem发布了新的文献求助10
17秒前
呆萌芙蓉完成签到 ,获得积分10
17秒前
科研通AI6应助王俊永采纳,获得10
18秒前
雪梅完成签到 ,获得积分10
18秒前
xiaozhejia完成签到,获得积分10
19秒前
yinyin完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助50
21秒前
嘻嘻完成签到 ,获得积分10
22秒前
zhang发布了新的文献求助20
22秒前
Zack完成签到,获得积分10
22秒前
yangjinru完成签到 ,获得积分10
23秒前
开心的若烟完成签到,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118022
求助须知:如何正确求助?哪些是违规求助? 4324123
关于积分的说明 13471119
捐赠科研通 4156950
什么是DOI,文献DOI怎么找? 2278220
邀请新用户注册赠送积分活动 1280000
关于科研通互助平台的介绍 1218588