DTDHM: detection of tandem duplications based on hybrid methods using next-generation sequencing data

计算机科学 模式识别(心理学) 管道(软件) 结构变异 航程(航空) 特征(语言学) 人工智能 数据挖掘 基因组 生物 遗传学 基因 材料科学 复合材料 语言学 哲学 程序设计语言
作者
Tianting Yuan,Jinxin Dong,Baoxian Jia,Hua Jiang,Zuyao Zhao,Mengjiao Zhou
出处
期刊:PeerJ [PeerJ]
卷期号:12: e17748-e17748 被引量:1
标识
DOI:10.7717/peerj.17748
摘要

Background Tandem duplication (TD) is a common and important type of structural variation in the human genome. TDs have been shown to play an essential role in many diseases, including cancer. However, it is difficult to accurately detect TDs due to the uneven distribution of reads and the inherent complexity of next-generation sequencing (NGS) data. Methods This article proposes a method called DTDHM (detection of tandem duplications based on hybrid methods), which utilizes NGS data to detect TDs in a single sample. DTDHM builds a pipeline that integrates read depth (RD), split read (SR), and paired-end mapping (PEM) signals. To solve the problem of uneven distribution of normal and abnormal samples, DTDHM uses the K-nearest neighbor (KNN) algorithm for multi-feature classification prediction. Then, the qualified split reads and discordant reads are extracted and analyzed to achieve accurate localization of variation sites. This article compares DTDHM with three other methods on 450 simulated datasets and five real datasets. Results In 450 simulated data samples, DTDHM consistently maintained the highest F1-score. The average F1-score of DTDHM, SVIM, TARDIS, and TIDDIT were 80.0%, 56.2%, 43.4%, and 67.1%, respectively. The F1-score of DTDHM had a small variation range and its detection effect was the most stable and 1.2 times that of the suboptimal method. Most of the boundary biases of DTDHM fluctuated around 20 bp, and its boundary deviation detection ability was better than TARDIS and TIDDIT. In real data experiments, five real sequencing samples (NA19238, NA19239, NA19240, HG00266, and NA12891) were used to test DTDHM. The results showed that DTDHM had the highest overlap density score (ODS) and F1-score of the four methods. Conclusions Compared with the other three methods, DTDHM achieved excellent results in terms of sensitivity, precision, F1-score, and boundary bias. These results indicate that DTDHM can be used as a reliable tool for detecting TDs from NGS data, especially in the case of low coverage depth and tumor purity samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑子还给我完成签到,获得积分10
刚刚
an发布了新的文献求助10
刚刚
刚刚
小叶白猫发布了新的文献求助10
刚刚
冷灰天花板完成签到,获得积分10
刚刚
卫三发布了新的文献求助10
1秒前
1秒前
豆豆豆豆逗完成签到,获得积分10
1秒前
1秒前
w_发布了新的文献求助10
1秒前
1秒前
积极钧发布了新的文献求助50
1秒前
清爽的老九完成签到,获得积分10
1秒前
情怀应助Jennie369采纳,获得10
2秒前
niulugai完成签到 ,获得积分10
2秒前
夏林发布了新的文献求助20
2秒前
流年末逝发布了新的文献求助10
2秒前
3秒前
dwz完成签到,获得积分20
3秒前
4秒前
共享精神应助月月采纳,获得10
4秒前
小马完成签到 ,获得积分10
4秒前
EmmaEmma完成签到,获得积分20
4秒前
5秒前
5秒前
小泓发布了新的文献求助10
5秒前
渡鸦12345发布了新的文献求助10
6秒前
zryyy发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
雪白问兰应助自觉的夏蓉采纳,获得10
9秒前
酷波er应助自觉的夏蓉采纳,获得10
9秒前
YuenYuen发布了新的文献求助10
9秒前
白方明发布了新的文献求助10
9秒前
辣辣发布了新的文献求助10
9秒前
大模型应助天上掉下篇NCS采纳,获得10
9秒前
拉长的远山完成签到,获得积分10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488034
求助须知:如何正确求助?哪些是违规求助? 3075861
关于积分的说明 9142479
捐赠科研通 2768110
什么是DOI,文献DOI怎么找? 1518966
邀请新用户注册赠送积分活动 703449
科研通“疑难数据库(出版商)”最低求助积分说明 701864