DTDHM: detection of tandem duplications based on hybrid methods using next-generation sequencing data

计算机科学 模式识别(心理学) 管道(软件) 结构变异 航程(航空) 特征(语言学) 人工智能 数据挖掘 基因组 生物 遗传学 基因 哲学 复合材料 材料科学 程序设计语言 语言学
作者
Tianting Yuan,Jinxin Dong,Baoxian Jia,Hua Jiang,Zuyao Zhao,Mengjiao Zhou
出处
期刊:PeerJ [PeerJ]
卷期号:12: e17748-e17748 被引量:1
标识
DOI:10.7717/peerj.17748
摘要

Background Tandem duplication (TD) is a common and important type of structural variation in the human genome. TDs have been shown to play an essential role in many diseases, including cancer. However, it is difficult to accurately detect TDs due to the uneven distribution of reads and the inherent complexity of next-generation sequencing (NGS) data. Methods This article proposes a method called DTDHM (detection of tandem duplications based on hybrid methods), which utilizes NGS data to detect TDs in a single sample. DTDHM builds a pipeline that integrates read depth (RD), split read (SR), and paired-end mapping (PEM) signals. To solve the problem of uneven distribution of normal and abnormal samples, DTDHM uses the K-nearest neighbor (KNN) algorithm for multi-feature classification prediction. Then, the qualified split reads and discordant reads are extracted and analyzed to achieve accurate localization of variation sites. This article compares DTDHM with three other methods on 450 simulated datasets and five real datasets. Results In 450 simulated data samples, DTDHM consistently maintained the highest F1-score. The average F1-score of DTDHM, SVIM, TARDIS, and TIDDIT were 80.0%, 56.2%, 43.4%, and 67.1%, respectively. The F1-score of DTDHM had a small variation range and its detection effect was the most stable and 1.2 times that of the suboptimal method. Most of the boundary biases of DTDHM fluctuated around 20 bp, and its boundary deviation detection ability was better than TARDIS and TIDDIT. In real data experiments, five real sequencing samples (NA19238, NA19239, NA19240, HG00266, and NA12891) were used to test DTDHM. The results showed that DTDHM had the highest overlap density score (ODS) and F1-score of the four methods. Conclusions Compared with the other three methods, DTDHM achieved excellent results in terms of sensitivity, precision, F1-score, and boundary bias. These results indicate that DTDHM can be used as a reliable tool for detecting TDs from NGS data, especially in the case of low coverage depth and tumor purity samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧凡灵发布了新的文献求助150
刚刚
英姑应助hunter采纳,获得10
1秒前
陈楷完成签到,获得积分10
1秒前
1秒前
Jasper应助畅快的听枫采纳,获得10
1秒前
cony发布了新的文献求助10
2秒前
Li发布了新的文献求助10
2秒前
2秒前
2秒前
李爱国应助明明亮亮采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
tingtingting完成签到,获得积分20
4秒前
乐乐应助呓语采纳,获得10
5秒前
幸运的张发布了新的文献求助10
5秒前
王欧尼发布了新的文献求助10
5秒前
LIN完成签到 ,获得积分10
5秒前
6秒前
搜大有发布了新的文献求助10
6秒前
领导范儿应助小杰采纳,获得10
6秒前
7秒前
科目三应助李哈哈采纳,获得10
7秒前
7秒前
英俊的铭应助Literaturecome采纳,获得10
7秒前
量子星尘发布了新的文献求助30
7秒前
ssp发布了新的文献求助10
7秒前
8秒前
tingtingting发布了新的文献求助10
8秒前
小二郎应助安静无色采纳,获得10
8秒前
sy完成签到 ,获得积分20
9秒前
9秒前
嘻嘻关注了科研通微信公众号
10秒前
李健的小迷弟应助向依白采纳,获得10
10秒前
eric发布了新的文献求助10
10秒前
11秒前
Nikki发布了新的文献求助10
11秒前
未du发布了新的文献求助10
11秒前
yaozhengjie发布了新的文献求助10
11秒前
完美世界应助hualin采纳,获得10
11秒前
Jasper应助aaaaa采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419