亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An offline data-driven dual-surrogate framework considering prediction error for history matching

计算机科学 替代模型 超参数 卷积神经网络 替代数据 人工智能 匹配(统计) 人工神经网络 机器学习 数据挖掘 算法 统计 数学 物理 量子力学 非线性系统
作者
Jinding Zhang,Kai Zhang,Liming Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Wenhao Fu,Xu Chen,Ziwei Bian,Yongfei Yang,Jun Yao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:192: 105680-105680
标识
DOI:10.1016/j.cageo.2024.105680
摘要

High computer power has long been a critical ingredient that affects the effectiveness and efficiency of history matching. Data-driven surrogate modeling as an efficient strategy can accelerate the history-matching process by constructing machine learning-based models with high computing speed but reduced accuracy. However, the applicability of surrogate models for different history-matching problems is uncertain due to the influence of data quality and quantity, model architectures, and hyperparameters. To overcome this issue, an offline data-driven dual-surrogate framework (ODDF) that considers the prediction error of surrogate models for history matching is proposed, where one surrogate model predicts the production data of reservoirs and the other one learns the prediction error of the former surrogate. The first surrogate model considers the time-series characteristics of production data using a recurrent neural network, while the second surrogate model regards the two-dimensional spatial correlation characteristics of multivariate prediction error using a fully convolutional neural network. Furthermore, an enhanced error model is applied to incorporate the prediction error into the objective function to reduce the influence of the prediction error on inversion results. Based on this hybrid framework, one can improve the prediction accuracy of surrogate models in history matching when the architectures or hyperparameters of surrogate models are not optimal. Additionally, one can obtain satisfactory results for history matching and uncertainty quantification based on surrogate modeling. The proposed framework is validated on the history matching of two- and three-dimensional reservoir models. The results show that the proposed method is robust in constructing the surrogate models and predicting the production data of reservoirs, which improves the efficiency and reliability of history matching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助蛐蛐采纳,获得10
2秒前
5秒前
Akim应助悬铃木采纳,获得10
7秒前
Ava应助白华苍松采纳,获得10
8秒前
yh完成签到,获得积分10
8秒前
9秒前
max完成签到,获得积分10
9秒前
木雨完成签到 ,获得积分10
13秒前
冷酷以太完成签到,获得积分10
19秒前
23秒前
知性的藏鸟完成签到 ,获得积分10
30秒前
在水一方应助科研通管家采纳,获得10
35秒前
小蘑菇应助科研通管家采纳,获得20
35秒前
香蕉觅云应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
半夏完成签到 ,获得积分10
36秒前
CNY完成签到 ,获得积分10
39秒前
科研通AI6应助fan采纳,获得10
42秒前
忧心的无血完成签到,获得积分20
45秒前
52秒前
JIRUIYI发布了新的文献求助10
56秒前
zoey完成签到,获得积分10
59秒前
龙骑士25完成签到 ,获得积分10
1分钟前
1分钟前
gqz发布了新的文献求助20
1分钟前
1分钟前
1分钟前
Lucas应助JIRUIYI采纳,获得10
1分钟前
蛐蛐发布了新的文献求助10
1分钟前
求求了完成签到 ,获得积分10
1分钟前
1分钟前
苏荷完成签到 ,获得积分10
1分钟前
科研通AI6应助gqz采纳,获得10
1分钟前
白华苍松发布了新的文献求助20
1分钟前
缓慢珠发布了新的文献求助10
1分钟前
serein完成签到 ,获得积分10
1分钟前
蛐蛐完成签到,获得积分20
1分钟前
1分钟前
今后应助白华苍松采纳,获得10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584578
求助须知:如何正确求助?哪些是违规求助? 4668351
关于积分的说明 14771240
捐赠科研通 4611160
什么是DOI,文献DOI怎么找? 2530000
邀请新用户注册赠送积分活动 1498932
关于科研通互助平台的介绍 1467441