亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An offline data-driven dual-surrogate framework considering prediction error for history matching

计算机科学 替代模型 超参数 卷积神经网络 替代数据 人工智能 匹配(统计) 人工神经网络 机器学习 数据挖掘 算法 统计 数学 物理 量子力学 非线性系统
作者
Jinding Zhang,Kai Zhang,Liming Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Wenhao Fu,Xu Chen,Ziwei Bian,Yongfei Yang,Jun Yao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:192: 105680-105680
标识
DOI:10.1016/j.cageo.2024.105680
摘要

High computer power has long been a critical ingredient that affects the effectiveness and efficiency of history matching. Data-driven surrogate modeling as an efficient strategy can accelerate the history-matching process by constructing machine learning-based models with high computing speed but reduced accuracy. However, the applicability of surrogate models for different history-matching problems is uncertain due to the influence of data quality and quantity, model architectures, and hyperparameters. To overcome this issue, an offline data-driven dual-surrogate framework (ODDF) that considers the prediction error of surrogate models for history matching is proposed, where one surrogate model predicts the production data of reservoirs and the other one learns the prediction error of the former surrogate. The first surrogate model considers the time-series characteristics of production data using a recurrent neural network, while the second surrogate model regards the two-dimensional spatial correlation characteristics of multivariate prediction error using a fully convolutional neural network. Furthermore, an enhanced error model is applied to incorporate the prediction error into the objective function to reduce the influence of the prediction error on inversion results. Based on this hybrid framework, one can improve the prediction accuracy of surrogate models in history matching when the architectures or hyperparameters of surrogate models are not optimal. Additionally, one can obtain satisfactory results for history matching and uncertainty quantification based on surrogate modeling. The proposed framework is validated on the history matching of two- and three-dimensional reservoir models. The results show that the proposed method is robust in constructing the surrogate models and predicting the production data of reservoirs, which improves the efficiency and reliability of history matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxr发布了新的文献求助10
刚刚
7秒前
轮胎配方发布了新的文献求助10
13秒前
小蘑菇应助风中的夕阳采纳,获得10
19秒前
zhangxr完成签到,获得积分10
25秒前
27秒前
38秒前
奶盐牙牙乐完成签到 ,获得积分10
1分钟前
1分钟前
L_MD完成签到,获得积分10
1分钟前
Yingkun_Xu发布了新的文献求助10
1分钟前
Yingkun_Xu完成签到,获得积分10
1分钟前
铁臂阿童木完成签到,获得积分10
1分钟前
句号完成签到 ,获得积分10
2分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
吴亦凡女朋友完成签到,获得积分10
2分钟前
2分钟前
ddddddd完成签到 ,获得积分10
3分钟前
3分钟前
张子捷应助吴亦凡女朋友采纳,获得10
3分钟前
3分钟前
3分钟前
犹豫芝麻应助偶尔打嗝儿采纳,获得10
3分钟前
4分钟前
Serendiply完成签到,获得积分10
4分钟前
uikymh完成签到 ,获得积分0
4分钟前
jjjjjjjjjjj发布了新的文献求助10
4分钟前
4分钟前
4分钟前
乐多完成签到,获得积分10
4分钟前
852应助泡面小猪采纳,获得30
5分钟前
5分钟前
泡面小猪发布了新的文献求助30
5分钟前
5分钟前
5分钟前
凩飒完成签到,获得积分0
5分钟前
ZYN完成签到,获得积分10
5分钟前
舒适初晴完成签到 ,获得积分10
6分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899665
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142