亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An offline data-driven dual-surrogate framework considering prediction error for history matching

计算机科学 替代模型 超参数 卷积神经网络 替代数据 人工智能 匹配(统计) 人工神经网络 机器学习 数据挖掘 算法 统计 数学 量子力学 物理 非线性系统
作者
Jinding Zhang,Kai Zhang,Liming Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Wenhao Fu,Xu Chen,Ziwei Bian,Yongfei Yang,Jun Yao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:192: 105680-105680
标识
DOI:10.1016/j.cageo.2024.105680
摘要

High computer power has long been a critical ingredient that affects the effectiveness and efficiency of history matching. Data-driven surrogate modeling as an efficient strategy can accelerate the history-matching process by constructing machine learning-based models with high computing speed but reduced accuracy. However, the applicability of surrogate models for different history-matching problems is uncertain due to the influence of data quality and quantity, model architectures, and hyperparameters. To overcome this issue, an offline data-driven dual-surrogate framework (ODDF) that considers the prediction error of surrogate models for history matching is proposed, where one surrogate model predicts the production data of reservoirs and the other one learns the prediction error of the former surrogate. The first surrogate model considers the time-series characteristics of production data using a recurrent neural network, while the second surrogate model regards the two-dimensional spatial correlation characteristics of multivariate prediction error using a fully convolutional neural network. Furthermore, an enhanced error model is applied to incorporate the prediction error into the objective function to reduce the influence of the prediction error on inversion results. Based on this hybrid framework, one can improve the prediction accuracy of surrogate models in history matching when the architectures or hyperparameters of surrogate models are not optimal. Additionally, one can obtain satisfactory results for history matching and uncertainty quantification based on surrogate modeling. The proposed framework is validated on the history matching of two- and three-dimensional reservoir models. The results show that the proposed method is robust in constructing the surrogate models and predicting the production data of reservoirs, which improves the efficiency and reliability of history matching.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dadabad完成签到 ,获得积分10
11秒前
38秒前
CipherSage应助zyw采纳,获得10
40秒前
44秒前
ZanE完成签到,获得积分10
44秒前
彭于晏应助科研通管家采纳,获得10
44秒前
尘默发布了新的文献求助20
48秒前
大大完成签到 ,获得积分10
1分钟前
共享精神应助尘默采纳,获得10
1分钟前
充满怪兽的世界完成签到,获得积分0
1分钟前
1分钟前
大个应助zhang采纳,获得10
1分钟前
zyw发布了新的文献求助10
1分钟前
ChenXY发布了新的文献求助10
1分钟前
小亮完成签到 ,获得积分10
1分钟前
ChenXY完成签到,获得积分10
1分钟前
2分钟前
爆米花应助小路采纳,获得20
2分钟前
尘默发布了新的文献求助10
2分钟前
脑洞疼应助尘默采纳,获得10
2分钟前
orixero应助尘路遐远采纳,获得10
2分钟前
2分钟前
小路发布了新的文献求助20
2分钟前
2分钟前
zhang发布了新的文献求助10
2分钟前
小路完成签到,获得积分10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
3分钟前
尘默发布了新的文献求助10
3分钟前
科目三应助尘默采纳,获得10
3分钟前
汉堡包应助追寻沁采纳,获得10
3分钟前
3分钟前
追寻沁发布了新的文献求助10
4分钟前
Niki完成签到,获得积分10
4分钟前
Sherry完成签到 ,获得积分10
4分钟前
风中青亦完成签到 ,获得积分10
4分钟前
4分钟前
尘默发布了新的文献求助10
5分钟前
一隅完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875804
求助须知:如何正确求助?哪些是违规求助? 6521563
关于积分的说明 15677701
捐赠科研通 4993929
什么是DOI,文献DOI怎么找? 2691687
邀请新用户注册赠送积分活动 1633875
关于科研通互助平台的介绍 1591541