An offline data-driven dual-surrogate framework considering prediction error for history matching

计算机科学 替代模型 超参数 卷积神经网络 替代数据 人工智能 匹配(统计) 人工神经网络 机器学习 数据挖掘 算法 统计 数学 物理 量子力学 非线性系统
作者
Jinding Zhang,Kai Zhang,Liming Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Wenhao Fu,Xu Chen,Ziwei Bian,Yongfei Yang,Jun Yao
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:192: 105680-105680
标识
DOI:10.1016/j.cageo.2024.105680
摘要

High computer power has long been a critical ingredient that affects the effectiveness and efficiency of history matching. Data-driven surrogate modeling as an efficient strategy can accelerate the history-matching process by constructing machine learning-based models with high computing speed but reduced accuracy. However, the applicability of surrogate models for different history-matching problems is uncertain due to the influence of data quality and quantity, model architectures, and hyperparameters. To overcome this issue, an offline data-driven dual-surrogate framework (ODDF) that considers the prediction error of surrogate models for history matching is proposed, where one surrogate model predicts the production data of reservoirs and the other one learns the prediction error of the former surrogate. The first surrogate model considers the time-series characteristics of production data using a recurrent neural network, while the second surrogate model regards the two-dimensional spatial correlation characteristics of multivariate prediction error using a fully convolutional neural network. Furthermore, an enhanced error model is applied to incorporate the prediction error into the objective function to reduce the influence of the prediction error on inversion results. Based on this hybrid framework, one can improve the prediction accuracy of surrogate models in history matching when the architectures or hyperparameters of surrogate models are not optimal. Additionally, one can obtain satisfactory results for history matching and uncertainty quantification based on surrogate modeling. The proposed framework is validated on the history matching of two- and three-dimensional reservoir models. The results show that the proposed method is robust in constructing the surrogate models and predicting the production data of reservoirs, which improves the efficiency and reliability of history matching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助莎莎采纳,获得10
刚刚
gaberella完成签到,获得积分10
1秒前
梅卡完成签到 ,获得积分10
2秒前
hzh完成签到 ,获得积分10
2秒前
毛头完成签到,获得积分10
3秒前
香蕉觅云应助XLL小绿绿采纳,获得10
3秒前
dmm完成签到 ,获得积分10
3秒前
玖月完成签到,获得积分10
4秒前
乖猫要努力应助旺仔采纳,获得10
4秒前
bkagyin应助123456789采纳,获得10
4秒前
小七完成签到,获得积分20
5秒前
7秒前
F.T完成签到,获得积分10
7秒前
Ling完成签到,获得积分10
9秒前
科研通AI5应助MAKEYF采纳,获得10
10秒前
xiaochuan完成签到,获得积分10
12秒前
12秒前
深情安青应助积极紫翠采纳,获得10
13秒前
14秒前
白日幻想家完成签到 ,获得积分10
14秒前
djbj2022发布了新的文献求助10
14秒前
懦弱的吐司完成签到 ,获得积分10
15秒前
尔尔完成签到 ,获得积分10
18秒前
打打应助吃桂花的芒果采纳,获得10
18秒前
ccboom完成签到 ,获得积分10
18秒前
云雨发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
左左发布了新的文献求助10
22秒前
24秒前
24秒前
积极紫翠发布了新的文献求助10
25秒前
cencen完成签到 ,获得积分10
26秒前
26秒前
26秒前
26秒前
极品男大发布了新的文献求助10
27秒前
XLL小绿绿发布了新的文献求助10
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578