An offline data-driven dual-surrogate framework considering prediction error for history matching

计算机科学 替代模型 超参数 卷积神经网络 替代数据 人工智能 匹配(统计) 人工神经网络 机器学习 数据挖掘 算法 统计 数学 量子力学 物理 非线性系统
作者
Jinding Zhang,Kai Zhang,Liming Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Wenhao Fu,Xu Chen,Ziwei Bian,Yongfei Yang,Jun Yao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:192: 105680-105680
标识
DOI:10.1016/j.cageo.2024.105680
摘要

High computer power has long been a critical ingredient that affects the effectiveness and efficiency of history matching. Data-driven surrogate modeling as an efficient strategy can accelerate the history-matching process by constructing machine learning-based models with high computing speed but reduced accuracy. However, the applicability of surrogate models for different history-matching problems is uncertain due to the influence of data quality and quantity, model architectures, and hyperparameters. To overcome this issue, an offline data-driven dual-surrogate framework (ODDF) that considers the prediction error of surrogate models for history matching is proposed, where one surrogate model predicts the production data of reservoirs and the other one learns the prediction error of the former surrogate. The first surrogate model considers the time-series characteristics of production data using a recurrent neural network, while the second surrogate model regards the two-dimensional spatial correlation characteristics of multivariate prediction error using a fully convolutional neural network. Furthermore, an enhanced error model is applied to incorporate the prediction error into the objective function to reduce the influence of the prediction error on inversion results. Based on this hybrid framework, one can improve the prediction accuracy of surrogate models in history matching when the architectures or hyperparameters of surrogate models are not optimal. Additionally, one can obtain satisfactory results for history matching and uncertainty quantification based on surrogate modeling. The proposed framework is validated on the history matching of two- and three-dimensional reservoir models. The results show that the proposed method is robust in constructing the surrogate models and predicting the production data of reservoirs, which improves the efficiency and reliability of history matching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sss完成签到 ,获得积分10
1秒前
2秒前
Lucas应助任哥哥采纳,获得10
2秒前
完美世界应助菜鸟采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Rosin发布了新的文献求助10
4秒前
小马甲应助榴莲采纳,获得10
4秒前
cecilia发布了新的文献求助10
5秒前
半圆亻发布了新的文献求助10
5秒前
英俊的铭应助xyx采纳,获得10
6秒前
6秒前
Beclin1完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Pupil完成签到,获得积分10
7秒前
龙溪完成签到,获得积分10
7秒前
积极的迎梦完成签到 ,获得积分10
8秒前
ccm应助sy采纳,获得10
9秒前
10秒前
10秒前
11秒前
自信谷冬完成签到,获得积分10
11秒前
解语花031发布了新的文献求助10
11秒前
丹妮完成签到,获得积分10
12秒前
聂xx完成签到,获得积分20
12秒前
菜鸟完成签到,获得积分10
12秒前
思源应助小燚采纳,获得10
12秒前
小豆芽博士完成签到,获得积分10
12秒前
子怡发布了新的文献求助10
13秒前
13秒前
黄梦娇完成签到,获得积分10
14秒前
永吉完成签到,获得积分10
15秒前
mumumuzzz完成签到,获得积分10
15秒前
木头人应助宁雨歆采纳,获得10
16秒前
聂xx发布了新的文献求助10
16秒前
16秒前
蒽女士发布了新的文献求助10
17秒前
王木木发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972