An offline data-driven dual-surrogate framework considering prediction error for history matching

计算机科学 替代模型 超参数 卷积神经网络 替代数据 人工智能 匹配(统计) 人工神经网络 机器学习 数据挖掘 算法 统计 数学 量子力学 物理 非线性系统
作者
Jinding Zhang,Kai Zhang,Liming Zhang,Wensheng Zhou,Chen Liu,Piyang Liu,Wenhao Fu,Xu Chen,Ziwei Bian,Yongfei Yang,Jun Yao
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:192: 105680-105680
标识
DOI:10.1016/j.cageo.2024.105680
摘要

High computer power has long been a critical ingredient that affects the effectiveness and efficiency of history matching. Data-driven surrogate modeling as an efficient strategy can accelerate the history-matching process by constructing machine learning-based models with high computing speed but reduced accuracy. However, the applicability of surrogate models for different history-matching problems is uncertain due to the influence of data quality and quantity, model architectures, and hyperparameters. To overcome this issue, an offline data-driven dual-surrogate framework (ODDF) that considers the prediction error of surrogate models for history matching is proposed, where one surrogate model predicts the production data of reservoirs and the other one learns the prediction error of the former surrogate. The first surrogate model considers the time-series characteristics of production data using a recurrent neural network, while the second surrogate model regards the two-dimensional spatial correlation characteristics of multivariate prediction error using a fully convolutional neural network. Furthermore, an enhanced error model is applied to incorporate the prediction error into the objective function to reduce the influence of the prediction error on inversion results. Based on this hybrid framework, one can improve the prediction accuracy of surrogate models in history matching when the architectures or hyperparameters of surrogate models are not optimal. Additionally, one can obtain satisfactory results for history matching and uncertainty quantification based on surrogate modeling. The proposed framework is validated on the history matching of two- and three-dimensional reservoir models. The results show that the proposed method is robust in constructing the surrogate models and predicting the production data of reservoirs, which improves the efficiency and reliability of history matching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
欧克欧克发布了新的文献求助10
刚刚
lin完成签到,获得积分10
1秒前
dudududu完成签到,获得积分10
1秒前
2秒前
Richard发布了新的文献求助10
2秒前
星辰大海应助冰苏打采纳,获得10
2秒前
积极诗霜完成签到,获得积分10
2秒前
chx123发布了新的文献求助10
3秒前
我是老大应助qiaoyun采纳,获得10
3秒前
刘文静完成签到,获得积分10
4秒前
尽落发布了新的文献求助10
5秒前
5秒前
6秒前
永远永远完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
合适的乐儿完成签到,获得积分10
8秒前
sswbzh应助风清扬采纳,获得50
9秒前
9秒前
9秒前
正念完成签到,获得积分10
10秒前
Orange应助心灵美的小伙采纳,获得10
10秒前
10秒前
10秒前
10秒前
寒水沉烟完成签到,获得积分10
10秒前
10秒前
充电宝应助九九采纳,获得10
11秒前
11秒前
怕黑寻双完成签到,获得积分10
11秒前
11秒前
11秒前
orixero应助王硕硕采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
llhh2024发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894