Predictive modeling of spring-back in pre-punched sheet roll forming using machine learning

轮缘 决策树 决定系数 弹簧(装置) 树(集合论) GSM演进的增强数据速率 决策树模型 计算机科学 章节(排版) 人工智能 模拟 机器学习 数学 结构工程 工程类 数学分析 操作系统
作者
Ali Zeinolabedin-Beygi,H. Moslemi Naeini,Hossein Talebi-Ghadikolaee,Amir Hossein Rabiee,Saeid Hajiahmadi
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE]
卷期号:59 (7): 463-474
标识
DOI:10.1177/03093247241263685
摘要

This study outlines an experimental and computational endeavor aimed at developing a machine learning model to estimate spring-back values utilizing the decision tree methodology. A design of experiment approach was employed to collect a dataset, and based on the experimental results, a precise model was constructed to predict spring-back values. The model considered parameters such as thickness, diameter of circle hole, distance between the center hole and flange edge, and hole spacing. Various hyper parameters, including max depth and minimum samples for split, were explored, with configurations such as (30,5), (20,8), and (10,2) being evaluated to identify the optimal model for spring-back prediction. Analysis of the results demonstrated that the decision tree models accurately estimated spring-back values in cold roll forming of pre-punched sheets based on the input parameters. The coefficient of determination in the test section for decision tree models with parameters (30,5), (20,8), and (10,2) was found to be 0.90, 0.98, and 0.96, respectively. Additionally, the percentage of absolute error in the test section for the same decision tree models was calculated as 8.84%, 6.18%, and 7.6%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sophie发布了新的文献求助10
刚刚
万能图书馆应助colin采纳,获得10
刚刚
刚刚
受伤的冰海完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
沉甸甸发布了新的文献求助10
2秒前
科研通AI2S应助小鱼采纳,获得30
2秒前
thought发布了新的文献求助30
3秒前
5秒前
可爱的函函应助Fred采纳,获得10
5秒前
嘻嘻完成签到,获得积分10
5秒前
yjihn完成签到,获得积分10
6秒前
韦颖发布了新的文献求助10
7秒前
66完成签到,获得积分10
7秒前
youchao发布了新的文献求助10
8秒前
丘比特应助shawn采纳,获得10
9秒前
FartKing完成签到,获得积分10
10秒前
10秒前
小二郎应助穆空采纳,获得10
10秒前
RebeccaHe应助狂奔的蜗牛采纳,获得10
10秒前
魁梧的海秋完成签到,获得积分10
11秒前
厉不厉害你坤哥完成签到,获得积分10
11秒前
FartKing发布了新的文献求助10
12秒前
大意的羊完成签到,获得积分10
12秒前
2023200743完成签到,获得积分10
12秒前
酷波er应助hgsd采纳,获得10
13秒前
顾己完成签到,获得积分10
15秒前
充电宝应助shinhee采纳,获得10
15秒前
15秒前
16秒前
大西瓜完成签到 ,获得积分10
16秒前
wallonce发布了新的文献求助200
16秒前
完美世界应助jagger采纳,获得10
18秒前
从容芮应助伶俐一曲采纳,获得10
18秒前
Will完成签到 ,获得积分10
20秒前
tuanheqi应助YangSY采纳,获得200
21秒前
21秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483