Parameter-efficient fine-tuning on large protein language models improves signal peptide prediction

生物 适配器(计算) 杠杆(统计) 计算生物学 人工智能 机器学习 计算机科学 操作系统
作者
Shuai Zeng,Duolin Wang,Lei Jiang,Dong Xu
出处
期刊:Genome Research [Cold Spring Harbor Laboratory Press]
卷期号:34 (9): 1445-1454 被引量:3
标识
DOI:10.1101/gr.279132.124
摘要

Signal peptides (SPs) play a crucial role in protein translocation in cells. The development of large protein language models (PLMs) and prompt-based learning provide a new opportunity for SP prediction, especially for the categories with limited annotated data. We present a parameter-efficient fine-tuning (PEFT) framework for SP prediction, PEFT-SP, to effectively utilize pretrained PLMs. We integrated low-rank adaptation (LoRA) into ESM-2 models to better leverage the protein sequence evolutionary knowledge of PLMs. Experiments show that PEFT-SP using LoRA enhances state-of-the-art results, leading to a maximum Matthews correlation coefficient (MCC) gain of 87.3% for SPs with small training samples and an overall MCC gain of 6.1%. Furthermore, we also employed two other PEFT methods, prompt tuning and adapter tuning, in ESM-2 for SP prediction. More elaborate experiments show that PEFT-SP using adapter tuning can also improve the state-of-the-art results by up to 28.1% MCC gain for SPs with small training samples and an overall MCC gain of 3.8%. LoRA requires fewer computing resources and less memory than the adapter tuning during the training stage, making it possible to adapt larger and more powerful protein models for SP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王侯将相发布了新的文献求助10
1秒前
GregHouse123发布了新的文献求助10
2秒前
小代发布了新的文献求助10
2秒前
晴天完成签到 ,获得积分10
2秒前
新野发布了新的文献求助10
2秒前
4秒前
YW完成签到,获得积分10
4秒前
Zxx应助哇哈哈采纳,获得10
5秒前
5秒前
6秒前
6秒前
杳鸢应助squirtle采纳,获得30
6秒前
HY兑发布了新的文献求助20
7秒前
清明完成签到,获得积分10
8秒前
8秒前
缓慢千易发布了新的文献求助10
8秒前
霜霜完成签到,获得积分20
8秒前
迷路柜子完成签到,获得积分10
8秒前
杰小锅完成签到 ,获得积分10
9秒前
干净访烟发布了新的文献求助100
9秒前
赘婿应助Zirong采纳,获得10
9秒前
10秒前
优美电脑完成签到,获得积分10
10秒前
10秒前
亦之完成签到,获得积分10
11秒前
小铭完成签到,获得积分10
11秒前
11秒前
Coraline应助李李李采纳,获得30
13秒前
卓诗云完成签到,获得积分10
13秒前
13秒前
杰小锅关注了科研通微信公众号
13秒前
优美电脑发布了新的文献求助10
14秒前
ED应助zhc采纳,获得10
15秒前
LONG发布了新的文献求助10
15秒前
齐一诺完成签到 ,获得积分10
17秒前
zhalc完成签到,获得积分20
17秒前
卓诗云发布了新的文献求助10
17秒前
GregHouse123完成签到,获得积分10
17秒前
猪猪hero完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952072
求助须知:如何正确求助?哪些是违规求助? 3497487
关于积分的说明 11087843
捐赠科研通 3228126
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801203