亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multicase structural damage classification based on semisupervised generative adversarial network

对抗制 生成语法 人工智能 生成对抗网络 计算机科学 模式识别(心理学) 深度学习
作者
Feng‐Liang Zhang,Xiao Li,Chul‐Woo Kim,He‐Qing Mu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:2
标识
DOI:10.1177/14759217241258785
摘要

With the rapid development of computer science and the need for structural safety assessment, structural health monitoring (SHM) systems are widely used in structures. SHM systems primarily rely on sensor systems to collect data related to structural safety conditions, which are then analyzed and assessed for performance evaluation. However, structures in real world are often affected by many uncertain factors, making damage detection based on pattern recognition still difficult to apply. In recent years, research on damage recognition based on machine learning has gained considerable attention. One of the research directions is to use machine learning algorithms to extract features from the dynamic response of structures. Aiming at the problem of inaccurate recognition by machine learning in the case of fewer label samples, this paper proposes a structural state classification method based on semisupervised deep learning. The method is verified on the vibration data of a steel truss bridge and a three-story framework structure to realize the classification of structural states under different working conditions. Unlike the general semisupervised learning method, this paper introduces the mean square error (MS) loss function in the loss function of generative adversarial networks (GANs), thereby enhancing the model training effect (mean square error-generative adversarial networks, MS-GAN). The semisupervised learning uses a small amount of supervised information to guide GAN and then sorts and screens unsupervised data through joint probability, which can reduce labeling costs and improve model accuracy. Compared with the general semisupervised GAN, the algorithm proposed in this paper makes full use of some labeled samples to enable the state recognition and classification of semisupervised learning. By properly utilizing labeled data, the accuracy of state recognition is significantly improved. Finally, a range of training tasks are implemented in order to enhance the classification capability of the proposed MS-GAN through the establishment of varying supervised ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助charly采纳,获得10
11秒前
zhaozhao完成签到,获得积分10
57秒前
zhaozhao发布了新的文献求助200
1分钟前
TIDUS完成签到,获得积分10
1分钟前
a36380382完成签到,获得积分10
1分钟前
TIDUS完成签到,获得积分10
1分钟前
搜集达人应助hehe_733采纳,获得50
1分钟前
Ollm完成签到 ,获得积分10
1分钟前
郗妫完成签到,获得积分10
2分钟前
科研剧中人完成签到,获得积分10
2分钟前
Criminology34发布了新的文献求助30
2分钟前
酷波er应助科研通管家采纳,获得50
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
GPTea应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
yyy完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
田様应助百里幻竹采纳,获得10
4分钟前
嘻嘻完成签到,获得积分10
4分钟前
彭于晏应助Harrison采纳,获得10
4分钟前
4分钟前
4分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
5分钟前
hehe_733发布了新的文献求助50
5分钟前
陶醉的烤鸡完成签到 ,获得积分10
5分钟前
感冒药完成签到 ,获得积分10
5分钟前
烟花应助wuuw采纳,获得10
5分钟前
6分钟前
charly发布了新的文献求助10
6分钟前
奔跑的小熊完成签到 ,获得积分10
6分钟前
ataybabdallah完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910180
求助须知:如何正确求助?哪些是违规求助? 4186131
关于积分的说明 12999160
捐赠科研通 3953457
什么是DOI,文献DOI怎么找? 2167943
邀请新用户注册赠送积分活动 1186401
关于科研通互助平台的介绍 1093455