Multicase structural damage classification based on semisupervised generative adversarial network

对抗制 生成语法 人工智能 生成对抗网络 计算机科学 模式识别(心理学) 深度学习
作者
Feng‐Liang Zhang,Xiao Li,Chul‐Woo Kim,He‐Qing Mu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (4): 2475-2503 被引量:4
标识
DOI:10.1177/14759217241258785
摘要

With the rapid development of computer science and the need for structural safety assessment, structural health monitoring (SHM) systems are widely used in structures. SHM systems primarily rely on sensor systems to collect data related to structural safety conditions, which are then analyzed and assessed for performance evaluation. However, structures in real world are often affected by many uncertain factors, making damage detection based on pattern recognition still difficult to apply. In recent years, research on damage recognition based on machine learning has gained considerable attention. One of the research directions is to use machine learning algorithms to extract features from the dynamic response of structures. Aiming at the problem of inaccurate recognition by machine learning in the case of fewer label samples, this paper proposes a structural state classification method based on semisupervised deep learning. The method is verified on the vibration data of a steel truss bridge and a three-story framework structure to realize the classification of structural states under different working conditions. Unlike the general semisupervised learning method, this paper introduces the mean square error (MS) loss function in the loss function of generative adversarial networks (GANs), thereby enhancing the model training effect (mean square error-generative adversarial networks, MS-GAN). The semisupervised learning uses a small amount of supervised information to guide GAN and then sorts and screens unsupervised data through joint probability, which can reduce labeling costs and improve model accuracy. Compared with the general semisupervised GAN, the algorithm proposed in this paper makes full use of some labeled samples to enable the state recognition and classification of semisupervised learning. By properly utilizing labeled data, the accuracy of state recognition is significantly improved. Finally, a range of training tasks are implemented in order to enhance the classification capability of the proposed MS-GAN through the establishment of varying supervised ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hlinc完成签到,获得积分20
刚刚
Kkkkk发布了新的文献求助10
1秒前
1秒前
在水一方应助如意宛秋采纳,获得10
2秒前
2秒前
冷晴发布了新的文献求助30
3秒前
4秒前
ting完成签到 ,获得积分10
5秒前
PHW发布了新的文献求助10
5秒前
6秒前
Hlinc发布了新的文献求助30
6秒前
7秒前
8秒前
GBRUCE完成签到,获得积分10
8秒前
万能图书馆应助孙萌萌采纳,获得10
9秒前
9秒前
yyy完成签到 ,获得积分10
10秒前
小乐比完成签到,获得积分10
10秒前
10秒前
bzp完成签到,获得积分10
10秒前
Jiayou Zhang完成签到,获得积分10
11秒前
清脆饼干发布了新的文献求助10
11秒前
聪慧的白猫完成签到,获得积分10
11秒前
WWW发布了新的文献求助10
11秒前
12秒前
14秒前
lll完成签到,获得积分10
15秒前
徐徐完成签到,获得积分10
15秒前
16秒前
16秒前
HTY发布了新的文献求助10
16秒前
17秒前
满意的蜗牛完成签到 ,获得积分10
17秒前
17秒前
hbpu230701发布了新的文献求助10
17秒前
17秒前
yiyi关注了科研通微信公众号
17秒前
jason0023完成签到,获得积分10
18秒前
习惯ing发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256