Multicase structural damage classification based on semisupervised generative adversarial network

对抗制 生成语法 人工智能 生成对抗网络 计算机科学 模式识别(心理学) 深度学习
作者
Feng‐Liang Zhang,Xiao Li,Chul‐Woo Kim,He‐Qing Mu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:1
标识
DOI:10.1177/14759217241258785
摘要

With the rapid development of computer science and the need for structural safety assessment, structural health monitoring (SHM) systems are widely used in structures. SHM systems primarily rely on sensor systems to collect data related to structural safety conditions, which are then analyzed and assessed for performance evaluation. However, structures in real world are often affected by many uncertain factors, making damage detection based on pattern recognition still difficult to apply. In recent years, research on damage recognition based on machine learning has gained considerable attention. One of the research directions is to use machine learning algorithms to extract features from the dynamic response of structures. Aiming at the problem of inaccurate recognition by machine learning in the case of fewer label samples, this paper proposes a structural state classification method based on semisupervised deep learning. The method is verified on the vibration data of a steel truss bridge and a three-story framework structure to realize the classification of structural states under different working conditions. Unlike the general semisupervised learning method, this paper introduces the mean square error (MS) loss function in the loss function of generative adversarial networks (GANs), thereby enhancing the model training effect (mean square error-generative adversarial networks, MS-GAN). The semisupervised learning uses a small amount of supervised information to guide GAN and then sorts and screens unsupervised data through joint probability, which can reduce labeling costs and improve model accuracy. Compared with the general semisupervised GAN, the algorithm proposed in this paper makes full use of some labeled samples to enable the state recognition and classification of semisupervised learning. By properly utilizing labeled data, the accuracy of state recognition is significantly improved. Finally, a range of training tasks are implemented in order to enhance the classification capability of the proposed MS-GAN through the establishment of varying supervised ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
fsdgbg发布了新的文献求助10
1秒前
nana应助wq采纳,获得10
1秒前
菠萝菠萝哒应助长村采纳,获得30
1秒前
带虾的烧麦完成签到,获得积分10
1秒前
Ava应助Jtiger采纳,获得10
2秒前
2秒前
shifeng_zai发布了新的文献求助10
2秒前
2秒前
gnufgg完成签到,获得积分10
3秒前
spurs17发布了新的文献求助10
3秒前
3秒前
小鱼发布了新的文献求助10
4秒前
kld完成签到,获得积分10
4秒前
活泼洙完成签到,获得积分10
4秒前
gfqdts66发布了新的文献求助10
4秒前
霸气的瑛发布了新的文献求助10
5秒前
6秒前
windows发布了新的文献求助10
6秒前
6秒前
zhao发布了新的文献求助10
7秒前
7秒前
li发布了新的文献求助10
7秒前
xin发布了新的文献求助10
7秒前
FashionBoy应助冰棍采纳,获得10
7秒前
FashionBoy应助yangxt-iga采纳,获得10
7秒前
7秒前
NexusExplorer应助笑嘻嘻采纳,获得10
8秒前
8秒前
ZOOR发布了新的文献求助10
9秒前
9秒前
9秒前
changli发布了新的文献求助10
10秒前
善学以致用应助白方明采纳,获得10
10秒前
10秒前
11秒前
Larluli发布了新的文献求助10
11秒前
zzz33发布了新的文献求助10
11秒前
福尔摩云发布了新的文献求助10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379