Multicase structural damage classification based on semisupervised generative adversarial network

对抗制 生成语法 人工智能 生成对抗网络 计算机科学 模式识别(心理学) 深度学习
作者
Feng‐Liang Zhang,Xiao Li,Chul‐Woo Kim,He‐Qing Mu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (4): 2475-2503 被引量:4
标识
DOI:10.1177/14759217241258785
摘要

With the rapid development of computer science and the need for structural safety assessment, structural health monitoring (SHM) systems are widely used in structures. SHM systems primarily rely on sensor systems to collect data related to structural safety conditions, which are then analyzed and assessed for performance evaluation. However, structures in real world are often affected by many uncertain factors, making damage detection based on pattern recognition still difficult to apply. In recent years, research on damage recognition based on machine learning has gained considerable attention. One of the research directions is to use machine learning algorithms to extract features from the dynamic response of structures. Aiming at the problem of inaccurate recognition by machine learning in the case of fewer label samples, this paper proposes a structural state classification method based on semisupervised deep learning. The method is verified on the vibration data of a steel truss bridge and a three-story framework structure to realize the classification of structural states under different working conditions. Unlike the general semisupervised learning method, this paper introduces the mean square error (MS) loss function in the loss function of generative adversarial networks (GANs), thereby enhancing the model training effect (mean square error-generative adversarial networks, MS-GAN). The semisupervised learning uses a small amount of supervised information to guide GAN and then sorts and screens unsupervised data through joint probability, which can reduce labeling costs and improve model accuracy. Compared with the general semisupervised GAN, the algorithm proposed in this paper makes full use of some labeled samples to enable the state recognition and classification of semisupervised learning. By properly utilizing labeled data, the accuracy of state recognition is significantly improved. Finally, a range of training tasks are implemented in order to enhance the classification capability of the proposed MS-GAN through the establishment of varying supervised ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
saber349完成签到,获得积分10
刚刚
哈哈哈发布了新的文献求助10
刚刚
goodbuhui发布了新的文献求助10
1秒前
2秒前
自信花瓣完成签到,获得积分20
2秒前
极速小鱼给极速小鱼的求助进行了留言
3秒前
句号0发布了新的文献求助10
4秒前
4秒前
慕听完成签到,获得积分10
4秒前
yayaha完成签到,获得积分10
4秒前
酷波er应助无风采纳,获得10
4秒前
风清扬应助王雯雯采纳,获得30
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
研0种牛马发布了新的文献求助10
7秒前
7秒前
8秒前
liars完成签到 ,获得积分10
10秒前
烟花应助哈哈哈采纳,获得10
10秒前
10秒前
11秒前
优雅老六发布了新的文献求助10
13秒前
13秒前
14秒前
Irene_Y完成签到,获得积分10
15秒前
wei发布了新的文献求助10
15秒前
gabee完成签到 ,获得积分10
17秒前
CipherSage应助秋浱采纳,获得10
17秒前
17秒前
彭于晏应助a1423072381采纳,获得10
17秒前
mumu完成签到,获得积分10
18秒前
光亮的胡萝卜完成签到,获得积分10
18秒前
dream177777发布了新的文献求助10
19秒前
水怪啊发布了新的文献求助10
21秒前
sunflower完成签到,获得积分10
21秒前
22秒前
22秒前
哈哈哈完成签到,获得积分10
22秒前
自觉一德发布了新的文献求助10
23秒前
wang洁发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548