Multicase structural damage classification based on semisupervised generative adversarial network

对抗制 生成语法 人工智能 生成对抗网络 计算机科学 模式识别(心理学) 深度学习
作者
Feng‐Liang Zhang,Xiao Li,Chul‐Woo Kim,He‐Qing Mu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:2
标识
DOI:10.1177/14759217241258785
摘要

With the rapid development of computer science and the need for structural safety assessment, structural health monitoring (SHM) systems are widely used in structures. SHM systems primarily rely on sensor systems to collect data related to structural safety conditions, which are then analyzed and assessed for performance evaluation. However, structures in real world are often affected by many uncertain factors, making damage detection based on pattern recognition still difficult to apply. In recent years, research on damage recognition based on machine learning has gained considerable attention. One of the research directions is to use machine learning algorithms to extract features from the dynamic response of structures. Aiming at the problem of inaccurate recognition by machine learning in the case of fewer label samples, this paper proposes a structural state classification method based on semisupervised deep learning. The method is verified on the vibration data of a steel truss bridge and a three-story framework structure to realize the classification of structural states under different working conditions. Unlike the general semisupervised learning method, this paper introduces the mean square error (MS) loss function in the loss function of generative adversarial networks (GANs), thereby enhancing the model training effect (mean square error-generative adversarial networks, MS-GAN). The semisupervised learning uses a small amount of supervised information to guide GAN and then sorts and screens unsupervised data through joint probability, which can reduce labeling costs and improve model accuracy. Compared with the general semisupervised GAN, the algorithm proposed in this paper makes full use of some labeled samples to enable the state recognition and classification of semisupervised learning. By properly utilizing labeled data, the accuracy of state recognition is significantly improved. Finally, a range of training tasks are implemented in order to enhance the classification capability of the proposed MS-GAN through the establishment of varying supervised ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责莆发布了新的文献求助10
刚刚
烟花应助LL采纳,获得10
刚刚
刚刚
光亮听白发布了新的文献求助10
1秒前
哭泣半双发布了新的文献求助30
2秒前
2秒前
3秒前
4秒前
小周发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
万能图书馆应助无情的匪采纳,获得10
6秒前
6秒前
Tomin发布了新的文献求助10
8秒前
Kestis.完成签到,获得积分10
8秒前
pantio完成签到,获得积分10
8秒前
悠悠发布了新的文献求助10
8秒前
wyy完成签到,获得积分20
9秒前
chenbo发布了新的文献求助10
10秒前
研究啥发布了新的文献求助10
12秒前
klony完成签到,获得积分10
13秒前
文文发布了新的文献求助10
13秒前
Li_C发布了新的文献求助10
13秒前
15秒前
15秒前
彭于晏应助鱼的宇宙采纳,获得10
17秒前
17秒前
等待的剑身完成签到,获得积分10
17秒前
19秒前
健忘曼彤发布了新的文献求助10
20秒前
幸运星完成签到 ,获得积分10
20秒前
机灵白桃发布了新的文献求助10
20秒前
21秒前
无情的匪发布了新的文献求助10
22秒前
马康辉应助Han采纳,获得10
22秒前
lichaoyes完成签到,获得积分10
23秒前
25秒前
25秒前
张姐发布了新的文献求助10
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202