Reinforced Metapath Optimization in Heterogeneous Information Networks for Drug-Target Interaction Prediction

杠杆(统计) 强化学习 利用 机器学习 计算机科学 图形 人工神经网络 水准点(测量) 数据挖掘 人工智能 理论计算机科学 计算机安全 大地测量学 地理
作者
Ben Xu,Jianping Chen,Yunzhe Wang,Qiming Fu,You Lu
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:21 (6): 2315-2329
标识
DOI:10.1109/tcbb.2024.3467135
摘要

Graph neural networks offer an effective avenue for predicting drug-target interactions. In this domain, researchers have found that constructing heterogeneous information networks based on metapaths using diverse biological datasets enhances prediction performance. However, the performance of such methods is closely tied to the selection of metapaths and the compatibility between metapath subgraphs and graph neural networks. Most existing approaches still rely on fixed strategies for selecting metapaths and often fail to fully exploit node information along the metapaths, limiting the improvement in model performance. This paper introduces a novel method for predicting drug-target interactions by optimizing metapaths in heterogeneous information networks. On one hand, the method formulates the metapath optimization problem as a Markov decision process, using the enhancement of downstream network performance as a reward signal. Through iterative training of a reinforcement learning agent, a high-quality set of metapaths is learned. On the other hand, to fully leverage node information along the metapaths, the paper constructs subgraphs based on nodes along the metapaths. Different depths of subgraphs are processed using different graph convolutional neural network. The proposed method is validated using standard heterogeneous biological benchmark datasets. Experimental results on standard datasets show significant advantages over traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
馒头发布了新的文献求助10
3秒前
3秒前
明@钰发布了新的文献求助30
3秒前
user_huang完成签到,获得积分10
4秒前
lalala发布了新的文献求助10
5秒前
Helen完成签到,获得积分10
5秒前
Gleast发布了新的文献求助10
7秒前
汉堡包应助科研通管家采纳,获得10
8秒前
夏硕应助科研通管家采纳,获得150
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得30
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
mhl11应助科研通管家采纳,获得10
8秒前
9秒前
123mutouren完成签到,获得积分10
9秒前
9秒前
像鱼完成签到,获得积分10
9秒前
小灰灰应助伏尾窗的猫采纳,获得10
10秒前
优雅的白安完成签到,获得积分10
11秒前
传奇3应助对方正在看文献采纳,获得10
11秒前
小蘑菇应助123采纳,获得10
12秒前
化工兔应助小羊采纳,获得10
13秒前
13秒前
sl发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
cocolu应助忧郁问寒采纳,获得10
15秒前
15秒前
15秒前
Jasper应助馒头采纳,获得30
15秒前
李爱国应助akaMZT采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297208
求助须知:如何正确求助?哪些是违规求助? 2932718
关于积分的说明 8458529
捐赠科研通 2605409
什么是DOI,文献DOI怎么找? 1422272
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644603