A coevolutionary algorithm using Self-organizing map approach for multimodal multi-objective optimization

计算机科学 局部最优 进化算法 多目标优化 自组织映射 人工智能 人工神经网络 帕累托原理 数学优化 国家(计算机科学) 算法 机器学习 数学
作者
Zongli Liu,Yuze Yang,Jie Cao,Jianlin Zhang,Zuohan Chen,Qingyang Liu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:164: 111954-111954 被引量:4
标识
DOI:10.1016/j.asoc.2024.111954
摘要

Multimodal Multi-Objective Problems (MMOPs) are frequently encountered in the real world. Traditional Multimodal Multi-Objective Evolutionary Algorithms (MMEAs) often find multiple Pareto optimal solutions with the same objective values. However, in real-world problems, there often exist multiple global optimal solutions and local optimal solutions at the same time. Ensuring that these solution sets are obtained simultaneously is the concern of most current researchers. To address this issue, this paper proposes a novel multimodal multi-objective evolutionary algorithm named CoSOMEA. In the CoSOMEA, a Self-organizing map (SOM) neural network is used to extract the information of decision space to ensure better exploration of the global optima and exploitation of the local optima. Meanwhile, coevolutionary mechanism are used to ensure a balance between the exploration and exploitation in order to avoid the algorithm falling into local areas. The three test suites named IDMP, IDMP_ee and MMF are adopted to verify the effectiveness of proposed algorithm. Experimental results demonstrate that the CoSOMEA exhibits competitive performance in solving MMOPs compared to other state-of-the-art MMEAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初步完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
猪猪hero发布了新的文献求助10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
rebubu应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得30
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
直率代荷应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
不二子发布了新的文献求助10
5秒前
6秒前
6秒前
pancake发布了新的文献求助10
6秒前
务实的南露完成签到,获得积分10
8秒前
打打应助棋士采纳,获得10
8秒前
8秒前
yang完成签到,获得积分10
9秒前
咸鱼完成签到 ,获得积分10
11秒前
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
脑洞疼应助陈塘关守将采纳,获得10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814