Long-term spatiotemporal mapping in lacustrine environment by remote sensing:Review with case study, challenges, and future directions

期限(时间) 遥感 环境科学 环境资源管理 地图学 地理 计算机科学 环境规划 地质学 物理 量子力学
作者
Lai Lai,Yuchen Liu,Yuchao Zhang,Z. Cao,Yuepeng Yin,Xi Chen,Jiale Jin,Shui-mu Wu
出处
期刊:Water Research [Elsevier]
卷期号:267: 122457-122457 被引量:1
标识
DOI:10.1016/j.watres.2024.122457
摘要

Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lxx完成签到,获得积分20
1秒前
3秒前
恋空完成签到,获得积分10
3秒前
yi只熊完成签到,获得积分20
4秒前
spume发布了新的文献求助10
5秒前
5秒前
fn完成签到,获得积分10
5秒前
6秒前
6秒前
汉堡包应助杰杰屋采纳,获得10
6秒前
悦耳玲完成签到 ,获得积分10
6秒前
哈哈哈完成签到,获得积分10
7秒前
7秒前
8秒前
万能图书馆应助Lxx采纳,获得10
8秒前
qwt应助取什么名字呢采纳,获得10
8秒前
嘎嘎发发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
jf完成签到,获得积分20
11秒前
小白果果发布了新的文献求助10
12秒前
顺心的雨真完成签到,获得积分10
12秒前
huhu发布了新的文献求助10
12秒前
13秒前
吉他平方发布了新的文献求助10
13秒前
jf发布了新的文献求助10
14秒前
14秒前
Jia发布了新的文献求助10
14秒前
苦夏发布了新的文献求助10
14秒前
HHHH发布了新的文献求助10
14秒前
木子青山发布了新的文献求助10
14秒前
15秒前
15秒前
细腻的花瓣完成签到 ,获得积分10
15秒前
KDS完成签到,获得积分10
15秒前
杳鸢应助白宇采纳,获得10
16秒前
夏天就应该爬树完成签到,获得积分10
16秒前
水凝胶发布了新的文献求助10
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222621
求助须知:如何正确求助?哪些是违规求助? 2871361
关于积分的说明 8174931
捐赠科研通 2538292
什么是DOI,文献DOI怎么找? 1370440
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619608