Long-term spatiotemporal mapping in lacustrine environment by remote sensing:Review with case study, challenges, and future directions

期限(时间) 遥感 环境科学 环境资源管理 地图学 地理 计算机科学 环境规划 地质学 物理 量子力学
作者
Lai Lai,Yuchen Liu,Yuchao Zhang,Z. Cao,Yuepeng Yin,Xi Chen,Jiale Jin,Shui-mu Wu
出处
期刊:Water Research [Elsevier]
卷期号:267: 122457-122457 被引量:2
标识
DOI:10.1016/j.watres.2024.122457
摘要

Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
1秒前
1秒前
深情安青应助Tail采纳,获得10
1秒前
晓天发布了新的文献求助10
1秒前
1秒前
1秒前
zerro完成签到,获得积分20
2秒前
2秒前
2秒前
小青椒应助歪歪扣叉采纳,获得30
2秒前
传奇3应助菩提石头采纳,获得10
2秒前
跳跃的海雪完成签到,获得积分10
2秒前
浑复天完成签到,获得积分10
3秒前
求助人员发布了新的文献求助10
3秒前
LLL20240701完成签到,获得积分10
3秒前
Lu完成签到,获得积分20
3秒前
从容祥发布了新的文献求助10
4秒前
4秒前
我是老大应助桥桥采纳,获得10
4秒前
CodeCraft应助daggeraxe采纳,获得10
5秒前
宋垚发布了新的文献求助10
5秒前
niko发布了新的文献求助10
5秒前
柒八染发布了新的文献求助10
5秒前
5秒前
nicoco完成签到,获得积分10
5秒前
XZ发布了新的文献求助10
6秒前
慕青应助xsy采纳,获得10
6秒前
乐乐应助求助人员采纳,获得10
6秒前
852应助李胜采纳,获得10
6秒前
善良枫叶发布了新的文献求助10
6秒前
火星上的小笼包完成签到,获得积分10
6秒前
你你完成签到,获得积分10
7秒前
既然发布了新的文献求助10
7秒前
完美世界应助鲜艳的傲蕾采纳,获得10
7秒前
活力的依风完成签到,获得积分10
7秒前
champagnefeng完成签到,获得积分10
7秒前
7秒前
8秒前
Mine_cherry应助密斯刘采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512216
求助须知:如何正确求助?哪些是违规求助? 4606600
关于积分的说明 14500450
捐赠科研通 4542054
什么是DOI,文献DOI怎么找? 2488803
邀请新用户注册赠送积分活动 1470901
关于科研通互助平台的介绍 1443089