Long-term spatiotemporal mapping in lacustrine environment by remote sensing:Review with case study, challenges, and future directions

期限(时间) 遥感 环境科学 环境资源管理 地图学 地理 计算机科学 环境规划 地质学 物理 量子力学
作者
Lai Lai,Yuchen Liu,Yuchao Zhang,Z. Cao,Yuepeng Yin,Xi Chen,Jiale Jin,Shui-mu Wu
出处
期刊:Water Research [Elsevier]
卷期号:267: 122457-122457 被引量:2
标识
DOI:10.1016/j.watres.2024.122457
摘要

Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要选李白完成签到,获得积分10
刚刚
Schenb发布了新的文献求助30
刚刚
1秒前
高数数完成签到 ,获得积分10
1秒前
liu发布了新的文献求助30
1秒前
娄十三完成签到 ,获得积分10
2秒前
2秒前
汉堡包应助yeezy123采纳,获得10
2秒前
线呢完成签到 ,获得积分10
3秒前
徐徐完成签到 ,获得积分10
3秒前
luxixi发布了新的文献求助10
3秒前
领导范儿应助大胆一刀采纳,获得10
3秒前
4秒前
4秒前
wzy关闭了wzy文献求助
5秒前
动听白秋完成签到 ,获得积分10
6秒前
Chemvenus发布了新的文献求助20
6秒前
6秒前
傅姐完成签到 ,获得积分10
6秒前
英姑应助猪猪hero采纳,获得10
8秒前
9秒前
花痴的易真完成签到,获得积分10
10秒前
10秒前
小鞠发布了新的文献求助10
11秒前
求知欲发布了新的文献求助10
11秒前
泡儿夫完成签到,获得积分10
11秒前
12秒前
烟花应助alexyang采纳,获得10
13秒前
Frank应助过时的小海豚采纳,获得10
13秒前
专注白昼完成签到,获得积分10
14秒前
小青椒应助little elvins采纳,获得30
14秒前
14秒前
淳恨战士完成签到,获得积分10
15秒前
狂野傲珊发布了新的文献求助10
15秒前
tianchen完成签到,获得积分10
16秒前
高屋建瓴完成签到,获得积分10
16秒前
wonderful发布了新的文献求助10
16秒前
wanci应助端庄煎饼采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
时光悠应助科研的小狗采纳,获得30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424743
求助须知:如何正确求助?哪些是违规求助? 4539089
关于积分的说明 14165404
捐赠科研通 4456188
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483