Long-term spatiotemporal mapping in lacustrine environment by remote sensing:Review with case study, challenges, and future directions

期限(时间) 遥感 环境科学 环境资源管理 地图学 地理 计算机科学 环境规划 地质学 物理 量子力学
作者
Lai Lai,Yuchen Liu,Yuchao Zhang,Z. Cao,Yuepeng Yin,Xi Chen,Jiale Jin,Shui-mu Wu
出处
期刊:Water Research [Elsevier]
卷期号:267: 122457-122457 被引量:2
标识
DOI:10.1016/j.watres.2024.122457
摘要

Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
就是梦而已完成签到,获得积分10
1秒前
陈青完成签到,获得积分20
2秒前
2秒前
天真映菡完成签到,获得积分20
2秒前
2秒前
万能图书馆应助哈哈采纳,获得10
3秒前
hhhhhhan616发布了新的文献求助10
3秒前
大宝S欧D蜜完成签到,获得积分10
4秒前
4秒前
陈星锦完成签到,获得积分10
5秒前
终梦应助keyanqianjin采纳,获得10
5秒前
忧郁凌波发布了新的文献求助30
6秒前
YIlia发布了新的文献求助10
7秒前
粗暴的毛豆完成签到,获得积分10
7秒前
8秒前
陈青发布了新的文献求助20
8秒前
kf033发布了新的文献求助20
8秒前
8秒前
仓颉发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6应助Dotuu采纳,获得30
9秒前
9秒前
香蕉完成签到 ,获得积分10
11秒前
一减完成签到 ,获得积分10
11秒前
12秒前
13秒前
许琦完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
仓颉完成签到,获得积分10
14秒前
淡定冰真完成签到,获得积分10
15秒前
彭于晏应助单薄冰兰采纳,获得10
16秒前
阿楚完成签到,获得积分10
16秒前
李爱国应助NathanChen采纳,获得10
16秒前
Vincent发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458366
求助须知:如何正确求助?哪些是违规求助? 4564435
关于积分的说明 14295002
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2458991
邀请新用户注册赠送积分活动 1448827
关于科研通互助平台的介绍 1424446