Long-term spatiotemporal mapping in lacustrine environment by remote sensing:Review with case study, challenges, and future directions

期限(时间) 遥感 环境科学 环境资源管理 地图学 地理 计算机科学 环境规划 地质学 物理 量子力学
作者
Lai Lai,Yuchen Liu,Yuchao Zhang,Z. Cao,Yuepeng Yin,Xi Chen,Jiale Jin,Shui-mu Wu
出处
期刊:Water Research [Elsevier BV]
卷期号:267: 122457-122457 被引量:2
标识
DOI:10.1016/j.watres.2024.122457
摘要

Satellite remote sensing, unlike traditional ship-based sampling, possess the advantage of revisit capabilities and provides over 40 years of data support for observing lake environments at local, regional, and global scales. In recent years, global freshwater and coastal waters have faced adverse environmental issues, including harmful phytoplankton blooms, eutrophication, and extreme temperatures. To comprehensively address the goal of 'reviewing the past, assessing the present, and predicting the future', research increasingly focuses on developing and producing algorithms and products for long-term and large-scale mapping. This paper provides a comprehensive review of related research, evaluating the current status, shortcomings, and future trends of remote sensing datasets, monitoring targets, technical methods, and data processing platforms. The analysis demonstrated that the long-term spatiotemporal dynamic lake monitoring transition is thriving: (i) evolving from single data sources to satellite collaborative observations to keep a trade-off between temporal and spatial resolutions, (ii) shifting from single research targets to diversified and multidimensional objectives, (iii) progressing from empirical/mechanism models to machine/deep/transfer learning algorithms, (iv) moving from local processing to cloud-based platforms and parallel computing. Future directions include, but are not limited to: (i) establishing a global sampling data-sharing platform, (ii) developing precise atmospheric correction algorithms, (iii) building next-generation ocean color sensors and virtual constellation networks, (iv) introducing Interpretable Machine Learning (IML) and Explainable Artificial Intelligence (XAI) models, (v) integrating cloud computing, big data/model/computer, and Internet of Things (IoT) technologies, (vi) crossing disciplines with earth sciences, hydrology, computer science, and human geography, etc. In summary, this work offers valuable references and insights for academic research and government decision-making, which are crucial for enhancing the long-term tracking of aquatic ecological environment and achieving the Sustainable Development Goals (SDGs).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵啵阳子发布了新的文献求助10
1秒前
炙热的雨双完成签到 ,获得积分10
1秒前
storm完成签到,获得积分10
4秒前
完美梨愁完成签到 ,获得积分10
7秒前
凉笙墨染完成签到,获得积分10
7秒前
光亮向露完成签到,获得积分10
9秒前
yang完成签到,获得积分10
10秒前
化学镁铝完成签到,获得积分10
11秒前
恭喜完成签到,获得积分10
14秒前
Diego完成签到,获得积分10
14秒前
Aha完成签到 ,获得积分10
15秒前
土豆泥完成签到,获得积分10
15秒前
目土土完成签到 ,获得积分10
16秒前
冷冷暴力完成签到,获得积分10
16秒前
沫荔完成签到 ,获得积分10
17秒前
枯叶蝶完成签到 ,获得积分10
17秒前
科目三应助王海祥采纳,获得10
18秒前
18秒前
zzz完成签到,获得积分10
19秒前
Duckseid完成签到,获得积分10
19秒前
行云流水完成签到,获得积分10
19秒前
Alicia完成签到 ,获得积分10
23秒前
23秒前
隐形的谷槐完成签到 ,获得积分10
24秒前
周萌完成签到 ,获得积分10
25秒前
虚幻初之完成签到,获得积分10
25秒前
LL完成签到,获得积分20
26秒前
柑橘发布了新的文献求助10
28秒前
geogydeniel完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
34秒前
独孤刘完成签到,获得积分10
36秒前
Janus完成签到,获得积分10
38秒前
khan发布了新的文献求助50
42秒前
YOUNG-M完成签到,获得积分10
43秒前
大力云朵完成签到,获得积分10
46秒前
现代老鼠完成签到,获得积分10
46秒前
蔡翌文完成签到 ,获得积分10
46秒前
夜曦完成签到 ,获得积分0
46秒前
浅辰完成签到,获得积分10
46秒前
瀚子完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910766
求助须知:如何正确求助?哪些是违规求助? 4186429
关于积分的说明 12999659
捐赠科研通 3953947
什么是DOI,文献DOI怎么找? 2168228
邀请新用户注册赠送积分活动 1186607
关于科研通互助平台的介绍 1093874