Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus

生物 代谢组学 选择(遗传算法) 计算生物学 基因组选择 生物技术 基因组学 进化生物学 基因组 遗传学 生物信息学 基因 基因型 单核苷酸多态性 计算机科学 人工智能
作者
Liang Xiao,Yue Wang,Wanxia Shen,Bin Liao,Xiaojuan Liu,Ze-Peng Yang,Jiebiao Chen,Chenning Zhao,Zhenkun Liao,Jinping Cao,Ping Wang,Peng Wang,Fuzhi Ke,Jianguo Xu,Qiong Lin,Wanpeng Xi,Lishu Wang,Juan Xu,Xiaochun Zhao,Chongde Sun
出处
期刊:Molecular Plant [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.molp.2024.10.009
摘要

Bioactive compounds are playing an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic basis for the selection and differentiation underlying bioactive compounds variations in citrus remain poorly understood. Here, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19,829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significantly differential accumulation of bioactive compounds in phenylpropane pathway, mainly flavonoids and coumarins, were unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases and UDP-glycosyltransferases. Moreover, we elucidated the citrus varieties with excellent antioxidant and anticancer capacities, clarifying the robust associations between distinct bioactivities and specific metabolites. Thus, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of the potential risk of coumarins. This study will illuminate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
marg发布了新的文献求助10
刚刚
Klar完成签到,获得积分10
刚刚
孟浮尘发布了新的文献求助10
1秒前
H1完成签到,获得积分10
1秒前
2秒前
YANer完成签到,获得积分10
2秒前
2秒前
Ava应助huxi采纳,获得10
2秒前
明理大树完成签到,获得积分20
3秒前
慈祥的鸣凤完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助20
4秒前
Aurora发布了新的文献求助10
4秒前
零蝉完成签到 ,获得积分10
5秒前
5秒前
子凡应助Lwj采纳,获得10
5秒前
天岚发布了新的文献求助10
6秒前
温暖的源智完成签到 ,获得积分10
7秒前
星辰大海应助小静静采纳,获得10
7秒前
学勾巴发布了新的文献求助10
7秒前
命运的X号发布了新的文献求助10
8秒前
整齐的白筠完成签到 ,获得积分10
8秒前
Klar发布了新的文献求助10
9秒前
liu发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
fyy完成签到 ,获得积分10
11秒前
聪慧的松鼠完成签到,获得积分10
11秒前
12秒前
迟大猫应助wwc采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
科研通AI5应助lulu采纳,获得10
12秒前
科研通AI5应助lulu采纳,获得10
12秒前
1351567822应助lulu采纳,获得150
12秒前
Kiki2008完成签到 ,获得积分10
12秒前
14秒前
Angie完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792