电解质
材料科学
碳酸丙烯酯
水分
锂(药物)
化学工程
热稳定性
电化学
热分解
复合材料
有机化学
化学
电极
医学
物理化学
工程类
内分泌学
作者
Nan Zhang,Ai‐Min Li,Weiran Zhang,Li Wang,Yi-Jie Liu,Xiyue Zhang,Guorui Cai,Hongli Wan,Feng Xu,Chunsheng Wang
标识
DOI:10.1002/adma.202408039
摘要
Abstract Commercial LiPF 6 ‐based electrolytes face limitations in oxidation stability (4.2 V) and water tolerance (10 ppm). While replacing LiPF 6 with lithium bis(trifluoromethane)sulfonimide (LiTFSI) improves water tolerance, it induces Al current collector corrosion above 3.7 V vs. Li/Li + . To address this, lithium cyano(trifluoromethanesulfonyl)imide (LiCTFSI) is proposed here as a non‐corrosive, moisture‐tolerant alternative. The 2.0 M LiCTFSI/propylene carbonate (PC)‐fluoroethylene carbonate (FEC) (7:3 by volume) electrolyte enables LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) cathodes to reach 210 mAh g −1 (2.8‐4.6 V) with a cycle life of 500. Full cells with NCM811||graphite (2.0 mAh cm −2 ) show 77.8% capacity retention after 500 cycles. Even with 2000 ppm moisture in the electrolyte, full cells maintain high cycling stability, reducing the need for costly dry rooms. The electrolyte’s low freezing point and high thermal stability enable the operation from ‐20 °C to 60 °C, delivering 168 mAh g −1 at ‐20 °C and retaining 94% capacity after 100 cycles at 60 °C. In contrast, cells with commercial LiPF 6 electrolyte deliver 71 mAh g −1 at ‐20°C and retain 52.7% after 100 cycles at 60 °C. This novel salt offers a cost‐effective solution for developing robust, high‐performance batteries suitable for extreme conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI