Magnetic and ultrasonic vibration dual-field assisted ultra-precision diamond cutting of high-entropy alloys

机械加工 钻石 振动 材料科学 磁场 领域(数学) 磁铁 可加工性 表面完整性 声学 机械工程 复合材料 物理 冶金 工程类 量子力学 数学 纯数学
作者
Yintian Xing,Yue Liu,Tengfei Yin,Denghui Li,Zhanwen Sun,Changxi Xue,Wai Sze Yip,Suet To
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier]
卷期号:202: 104208-104208 被引量:19
标识
DOI:10.1016/j.ijmachtools.2024.104208
摘要

Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贤惠的曼凝完成签到,获得积分10
刚刚
鱼跃发布了新的文献求助10
1秒前
传奇3应助抗氧剂采纳,获得10
1秒前
1秒前
1秒前
朴实的小懒虫完成签到,获得积分10
2秒前
hebishan完成签到,获得积分10
3秒前
cjchem发布了新的文献求助10
4秒前
无花果应助边走边听采纳,获得10
5秒前
5秒前
5秒前
无花果应助feifeifei采纳,获得10
5秒前
开放如天完成签到 ,获得积分10
6秒前
laber应助fangfeng采纳,获得50
6秒前
搜集达人应助三峡好人采纳,获得10
6秒前
6秒前
7秒前
852应助海上钢琴家采纳,获得10
7秒前
luo发布了新的文献求助10
7秒前
7秒前
大个应助追尾的猫采纳,获得10
8秒前
CodeCraft应助闪闪的大炮采纳,获得10
9秒前
科研通AI6应助何小明采纳,获得10
9秒前
顾矜应助Flora采纳,获得10
9秒前
慕青应助奥丁蒂法采纳,获得10
9秒前
芫华发布了新的文献求助10
10秒前
11秒前
科研通AI6应助迷路的曼凡采纳,获得30
11秒前
照相机发布了新的文献求助10
11秒前
万能图书馆应助鲤鱼山人采纳,获得10
12秒前
12秒前
13秒前
抗氧剂完成签到,获得积分10
13秒前
lvlv发布了新的文献求助30
13秒前
cjchem完成签到,获得积分10
13秒前
13秒前
13秒前
螺蛳粉完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321077
求助须知:如何正确求助?哪些是违规求助? 4462894
关于积分的说明 13888018
捐赠科研通 4353883
什么是DOI,文献DOI怎么找? 2391403
邀请新用户注册赠送积分活动 1385061
关于科研通互助平台的介绍 1354824