Magnetic and ultrasonic vibration dual-field assisted ultra-precision diamond cutting of high-entropy alloys

机械加工 钻石 振动 材料科学 磁场 领域(数学) 磁铁 可加工性 表面完整性 声学 机械工程 复合材料 物理 冶金 工程类 量子力学 数学 纯数学
作者
Yintian Xing,Yue Liu,Tengfei Yin,Denghui Li,Zhanwen Sun,Changxi Xue,Wai Sze Yip,Suet To
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier BV]
卷期号:202: 104208-104208 被引量:13
标识
DOI:10.1016/j.ijmachtools.2024.104208
摘要

Despite the remarkable achievements in single-energy field-assisted diamond cutting technology, its performance remains unsatisfactory for processing high-entropy alloys (HEAs), targeted for next-generation large-scale industrial applications due to their exceptional properties. The challenge lies in overcoming the limitations of current single-energy field-assisted processing to achieve ultra-precision manufacturing of these advanced materials. This study proposes a multi-energy field-assisted ultra-precision machining technology, the magnetic and ultrasonic vibration dual-field assisted diamond cutting (MUVFDC), to address the current challenges. The phenomenological aspects of the dual-field coupling effect on HEAs are explored and investigated through comprehensive characterization of the workpiece material, ranging from macroscopic surface morphology to microscopic structural features. These analyses are performed based on experimental results from four different processing technologies: non-energy field, magnetic field, ultrasonic vibration field, and dual-field assisted machining. Research results demonstrate that MUVFDC technology effectively combines the advantages of a vibration field, which enhances cutting stability, and a magnetic field, which improves the machinability of materials. Additionally, this coupling technology addresses the challenges associated with single-energy field machining: it mitigates the difficulty of controlling surface scratches caused by tiny hard particles in a vibration field and suppresses the rapid tool wear encountered in a magnetic field. Furthermore, the gradient evolution of the subsurface microstructure reveals that the vibration field suppresses the severe matrix deformation induced by magnetic excitation. Simultaneously, the magnetic field reduces the size inhomogeneity of recrystallized grains caused by intermittent cutting. Overall, MUVFDC technology enhances surface quality, suppresses tool wear, smooths chip morphology, and reduces subsurface damage compared to single-energy field or non-energy-assisted machining. This work breaks through the performance limitations of traditional single-energy field-assisted processing and advances the understanding of the dual-field coupling effects in HEAs machining. It also presents a promising processing technology for the future ultra-precision manufacturing of advanced materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助踏实树叶采纳,获得10
2秒前
余烬发布了新的文献求助10
3秒前
6秒前
傻子完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
Rick发布了新的文献求助10
12秒前
华仔应助满眼星辰采纳,获得10
13秒前
13秒前
14秒前
香蕉觅云应助平常的凝蕊采纳,获得30
15秒前
15秒前
可靠笑翠发布了新的文献求助10
15秒前
16秒前
maox1aoxin应助zhang-leo采纳,获得30
16秒前
16秒前
fishfun发布了新的文献求助10
17秒前
ww007完成签到,获得积分10
18秒前
ding应助Rick采纳,获得10
18秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
烟花应助Flynn采纳,获得10
20秒前
21秒前
花畦种豆完成签到,获得积分10
22秒前
扭一扭的奥利奥完成签到,获得积分10
23秒前
23秒前
李健应助无限妙梦采纳,获得10
24秒前
Bio应助感动背包采纳,获得30
24秒前
桐桐应助釉质牙医采纳,获得10
26秒前
26秒前
29秒前
Astrid发布了新的文献求助10
30秒前
31秒前
满眼星辰发布了新的文献求助10
31秒前
32秒前
33秒前
顾矜应助xiao xu采纳,获得10
33秒前
无限妙梦发布了新的文献求助10
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167