亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Realizing record efficiencies for ultra‐thin organic photovoltaics through step‐by‐step optimizations of silver nanowire transparent electrodes

材料科学 薄膜 光电子学 电极 氧化铟锡 有机太阳能电池 光伏 纳米技术 能量转换效率 纳米线 光伏系统 复合材料 电气工程 聚合物 化学 工程类 物理化学
作者
Xiang‐Jun Zheng,Yiming Wang,Tianyi Chen,Yibo Kong,Xiaoling Wu,Cun Zhou,Qun Luo,Chang‐Qi Ma,Lijian Zuo,Minmin Shi,Hongzheng Chen
标识
DOI:10.1002/flm2.30
摘要

Abstract Ultra‐thin (also known as ultra‐flexible) organic photovoltaics (OPVs) represent a strong contender among emerging photovoltaic technologies. However, due to the imbalance between the optical and electrical properties of indium tin oxide (ITO)‐free transparent electrodes, the ultra‐thin OPVs often exhibit lower efficiency compared to the brittle yet more balanced rigid ITO counterparts. Here, we design and fabricate an advanced ultra‐thin OPV, which involves a thoroughly optimized silver nanowires (AgNWs) transparent electrode (named AZAT) with excellent optical, electrical and mechanical properties. Specifically, the high‐kinetic energy spray‐coating method successfully yields a curve‐shaped, tightly connected and uniformly distributed AgNWs film, complemented by a capping layer of zinc oxide:aluminum‐doped zinc oxide (ZnO:AZO) to improve charge collection capability. Simultaneously, the transparency of the electrode is enhanced through precise optical optimization. Thus, we implant the AZAT‐based devices on 1.3 μm polyimide substrates and demonstrate ultra‐thin OPVs with a record efficiency of 18.46% and a power density of 40.31 W g −1 , which is the highest value for PV technologies. Encouragingly, the AZAT electrode also enables the 10.0 cm 2 device to exhibit a high efficiency of 15.67%. These results provide valuable insights for the development of ultra‐thin OPVs with high efficiency, low cost, superior flexibility, and up‐scaling capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
12秒前
Jasper应助维颖采纳,获得10
15秒前
小花小宝和阿飞完成签到 ,获得积分10
20秒前
吴端完成签到,获得积分10
21秒前
贪玩老姆完成签到 ,获得积分10
26秒前
tj完成签到 ,获得积分10
31秒前
34秒前
阳佟水蓉完成签到,获得积分10
38秒前
40秒前
所所应助zhvjdb采纳,获得10
41秒前
42秒前
58秒前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
2分钟前
馍夹菜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Vivian发布了新的文献求助30
2分钟前
Fox完成签到,获得积分10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
维颖完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430