Discriminative analysis of aroma profiles in diverse cigar products varieties through integrated sensory evaluation, GC-IMS and E-nose

化学 芳香 色谱法 电子鼻 判别式 气相色谱-质谱法 感官分析 感觉系统 食品科学 人工智能 质谱法 心理学 计算机科学 认知心理学
作者
Quanlong Zhou,Xiaoxiao Feng,Yiwen Zhu,Changlin Zhou,Panpan Chen,Shilong Zhao,Quanwei Zhou,Maoshen Chen,Dongliang Li,Lulu Liu,Wenping Zhao,Yuan Liu
出处
期刊:Journal of Chromatography A [Elsevier BV]
卷期号:1733: 465241-465241 被引量:2
标识
DOI:10.1016/j.chroma.2024.465241
摘要

Cigars, treasured for their rich aromatic profiles, occupy a notable segment in the global consumer market. The objective of this study was to characterize the volatile aroma compounds that shape the flavor profiles of six distinct varieties of Great Wall cigars, contributing to the understanding of cigar aroma analysis. Utilizing HS-GC-IMS and sensory evaluation, the study discerned the aroma profiles of GJ No. 6 (GJ), Animal from the Chinese zodiac (SX), Range Rover No. 3 Classic (JD), Miracle 132 (QJ), Sheng Shi No. 5 (SS), and Red 132 (HS) cigars. The analysis uncovered a spectrum of characteristic aromas, including tobacco, creaminess, cocoa, leather, baking, herbaceous, leathery, woodsy, and fruity notes. A total of 88 compounds were identified, categorized into 11 chemical classes, with their quantities varying among the cigars in a descending order of QJ, JD, GJ, SS, HS, and SX. 24 compounds, such as 2-heptanone, n-butanol, 2,6-dimethylpyrazine and 2-furfuryl methyl sulfide were considered as key differential components. The volatile components were effectively differentiated using principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and cluster analysis, revealing correlations between sensory attributes, key components, and electronic nose (E-nose). This research introduces a novel method for analyzing volatile aroma components in cigars, offering insights to enhance cigar quality and to foster the development of new products with unique aroma profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助orange采纳,获得20
刚刚
酷波er应助快乐的冰巧采纳,获得10
刚刚
1秒前
赘婿应助馨妈采纳,获得10
1秒前
2秒前
爱吃香菜的小黄瓜完成签到,获得积分20
2秒前
wangxuan完成签到,获得积分10
2秒前
dsfv完成签到,获得积分10
3秒前
科研通AI2S应助puyu采纳,获得10
3秒前
3秒前
WXP发布了新的文献求助10
4秒前
英姑应助冷艳莛采纳,获得10
4秒前
无辜洋葱发布了新的文献求助10
4秒前
lyw关注了科研通微信公众号
5秒前
5秒前
6秒前
6秒前
momo发布了新的文献求助10
7秒前
8秒前
SciGPT应助李富贵采纳,获得10
8秒前
Wguan完成签到,获得积分10
9秒前
云霄完成签到,获得积分20
10秒前
儒雅的不愁完成签到 ,获得积分10
10秒前
化学发布了新的文献求助10
10秒前
11秒前
12秒前
庾烙发布了新的文献求助10
12秒前
12秒前
13秒前
Zxskadi发布了新的文献求助10
14秒前
科研通AI5应助化学采纳,获得10
14秒前
今后应助无辜洋葱采纳,获得10
14秒前
sxm完成签到,获得积分10
15秒前
kai_完成签到,获得积分10
15秒前
17秒前
半柚发布了新的文献求助10
17秒前
17秒前
桐桐应助xu采纳,获得10
17秒前
18秒前
yingzi发布了新的文献求助10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736145
求助须知:如何正确求助?哪些是违规求助? 3279889
关于积分的说明 10017680
捐赠科研通 2996573
什么是DOI,文献DOI怎么找? 1644172
邀请新用户注册赠送积分活动 781816
科研通“疑难数据库(出版商)”最低求助积分说明 749475