AI‐smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps

运动学 脚踝 膝关节屈曲 反向运动 膝关节 运动捕捉 物理医学与康复 接头(建筑物) 髋关节屈曲 运动(物理) 运动范围 计算机科学 医学 跳跃 人工智能 物理疗法 解剖 工程类 物理 外科 经典力学 建筑工程 量子力学
作者
Philipp Barzyk,Philip Zimmermann,Manuel Stein,Daniel A. Keim,Markus Grüber
出处
期刊:European Journal of Sport Science [Taylor & Francis]
标识
DOI:10.1002/ejsc.12186
摘要

Recently, AI-driven skeleton reconstruction tools that use multistage computer vision pipelines were designed to estimate 3D kinematics from 2D video sequences. In the present study, we validated a novel markerless, smartphone video-based artificial intelligence (AI) motion capture system for hip, knee, and ankle angles during countermovement jumps (CMJs). Eleven participants performed six CMJs. We used 2D videos created by a smartphone (Apple iPhone X, 4K, 60 fps) to create 24 different keypoints, which together built a full skeleton including joints and their connections. Body parts and skeletal keypoints were localized by calculating confidence maps using a multilevel convolutional neural network that integrated both spatial and temporal features. We calculated hip, knee, and ankle angles in the sagittal plane and compared it with the angles measured by a VICON system. We calculated the correlation between both method's angular progressions, mean squared error (MSE), mean average error (MAE), and the maximum and minimum angular error and run statistical parametric mapping (SPM) analysis. Pearson correlation coefficients (r) for hip, knee, and ankle angular progressions in the sagittal plane during the entire movement were 0.96, 0.99, and 0.87, respectively. SPM group-analysis revealed some significant differences only for ankle angular progression. MSE was below 5.7°, MAE was below 4.5°, and error for maximum amplitudes was below 3.2°. The smartphone AI motion capture system with the trained multistage computer vision pipeline was able to detect, especially hip and knee angles in the sagittal plane during CMJs with high precision from a frontal view only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
用心听发布了新的文献求助10
刚刚
灯泡泡完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
酷波er应助yyy采纳,获得10
1秒前
李健应助冷傲宛海采纳,获得10
1秒前
整齐的伊发布了新的文献求助10
2秒前
我是老大应助飞快的诗槐采纳,获得10
2秒前
东方客警完成签到,获得积分10
2秒前
我是老大应助龚幻梦采纳,获得10
3秒前
小二郎应助静静采纳,获得10
4秒前
jesi完成签到,获得积分20
4秒前
花花发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
研友_VZG7GZ应助静听风吼采纳,获得30
6秒前
icui发布了新的文献求助10
6秒前
飞快的语山完成签到,获得积分10
8秒前
小小发布了新的文献求助10
8秒前
长青发布了新的文献求助10
8秒前
CC关闭了CC文献求助
8秒前
斯文败类应助黑天鹅采纳,获得10
9秒前
10秒前
11秒前
Lucas应助认真的寒香采纳,获得10
11秒前
泡泡糖发布了新的文献求助10
11秒前
李小木子发布了新的文献求助10
11秒前
爱听歌契发布了新的文献求助10
12秒前
汉堡包应助思南欧采纳,获得10
12秒前
Wang应助爱撒娇的惋清采纳,获得10
12秒前
大模型应助爱撒娇的惋清采纳,获得10
12秒前
花花完成签到,获得积分10
13秒前
痴笑发布了新的文献求助20
13秒前
13秒前
13秒前
muzima完成签到,获得积分10
14秒前
djiwisksk66应助暴龙战神采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154