AI‐smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps

运动学 脚踝 膝关节屈曲 反向运动 膝关节 运动捕捉 物理医学与康复 接头(建筑物) 髋关节屈曲 运动(物理) 运动范围 计算机科学 医学 跳跃 人工智能 物理疗法 解剖 工程类 物理 外科 经典力学 建筑工程 量子力学
作者
Philipp Barzyk,Philip Zimmermann,Manuel Stein,Daniel A. Keim,Markus Grüber
出处
期刊:European Journal of Sport Science [Taylor & Francis]
标识
DOI:10.1002/ejsc.12186
摘要

Recently, AI-driven skeleton reconstruction tools that use multistage computer vision pipelines were designed to estimate 3D kinematics from 2D video sequences. In the present study, we validated a novel markerless, smartphone video-based artificial intelligence (AI) motion capture system for hip, knee, and ankle angles during countermovement jumps (CMJs). Eleven participants performed six CMJs. We used 2D videos created by a smartphone (Apple iPhone X, 4K, 60 fps) to create 24 different keypoints, which together built a full skeleton including joints and their connections. Body parts and skeletal keypoints were localized by calculating confidence maps using a multilevel convolutional neural network that integrated both spatial and temporal features. We calculated hip, knee, and ankle angles in the sagittal plane and compared it with the angles measured by a VICON system. We calculated the correlation between both method's angular progressions, mean squared error (MSE), mean average error (MAE), and the maximum and minimum angular error and run statistical parametric mapping (SPM) analysis. Pearson correlation coefficients (r) for hip, knee, and ankle angular progressions in the sagittal plane during the entire movement were 0.96, 0.99, and 0.87, respectively. SPM group-analysis revealed some significant differences only for ankle angular progression. MSE was below 5.7°, MAE was below 4.5°, and error for maximum amplitudes was below 3.2°. The smartphone AI motion capture system with the trained multistage computer vision pipeline was able to detect, especially hip and knee angles in the sagittal plane during CMJs with high precision from a frontal view only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
minminzi应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
ABCDEFG应助科研通管家采纳,获得50
刚刚
yznfly应助科研通管家采纳,获得20
刚刚
yznfly应助科研通管家采纳,获得20
刚刚
1秒前
玩命的安雁完成签到 ,获得积分10
1秒前
1秒前
Shellingford完成签到,获得积分10
1秒前
2秒前
阳生发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
善良的剑通完成签到,获得积分10
2秒前
程蒽发布了新的文献求助10
2秒前
张津浩完成签到,获得积分10
3秒前
3秒前
爱笑如冰完成签到,获得积分10
4秒前
房LY完成签到,获得积分10
6秒前
岳岳岳发布了新的文献求助10
6秒前
狐尾完成签到,获得积分10
7秒前
Scarrt完成签到,获得积分10
9秒前
hhr完成签到 ,获得积分10
11秒前
荒谬完成签到,获得积分10
11秒前
风清扬完成签到,获得积分0
12秒前
Kristina完成签到,获得积分10
13秒前
壮观的梦易完成签到,获得积分10
13秒前
14秒前
呼呼完成签到,获得积分10
14秒前
BrightForever发布了新的文献求助10
14秒前
Song完成签到,获得积分10
15秒前
风清扬发布了新的文献求助10
15秒前
WLL完成签到,获得积分10
15秒前
gaowei完成签到 ,获得积分10
17秒前
自然的岱周完成签到,获得积分10
18秒前
excellent_shit完成签到,获得积分10
18秒前
斯文败类应助黑土采纳,获得10
18秒前
沙糖桔完成签到,获得积分10
19秒前
三四月发布了新的文献求助30
19秒前
Rubia完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910937
求助须知:如何正确求助?哪些是违规求助? 4186480
关于积分的说明 13000160
捐赠科研通 3954103
什么是DOI,文献DOI怎么找? 2168267
邀请新用户注册赠送积分活动 1186667
关于科研通互助平台的介绍 1093974