AI‐smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps

运动学 脚踝 膝关节屈曲 反向运动 膝关节 运动捕捉 物理医学与康复 接头(建筑物) 髋关节屈曲 运动(物理) 运动范围 计算机科学 医学 跳跃 人工智能 物理疗法 解剖 工程类 物理 外科 经典力学 建筑工程 量子力学
作者
Philipp Barzyk,Philip Zimmermann,Manuel Stein,Daniel A. Keim,Markus Grüber
出处
期刊:European Journal of Sport Science [Informa]
标识
DOI:10.1002/ejsc.12186
摘要

Recently, AI-driven skeleton reconstruction tools that use multistage computer vision pipelines were designed to estimate 3D kinematics from 2D video sequences. In the present study, we validated a novel markerless, smartphone video-based artificial intelligence (AI) motion capture system for hip, knee, and ankle angles during countermovement jumps (CMJs). Eleven participants performed six CMJs. We used 2D videos created by a smartphone (Apple iPhone X, 4K, 60 fps) to create 24 different keypoints, which together built a full skeleton including joints and their connections. Body parts and skeletal keypoints were localized by calculating confidence maps using a multilevel convolutional neural network that integrated both spatial and temporal features. We calculated hip, knee, and ankle angles in the sagittal plane and compared it with the angles measured by a VICON system. We calculated the correlation between both method's angular progressions, mean squared error (MSE), mean average error (MAE), and the maximum and minimum angular error and run statistical parametric mapping (SPM) analysis. Pearson correlation coefficients (r) for hip, knee, and ankle angular progressions in the sagittal plane during the entire movement were 0.96, 0.99, and 0.87, respectively. SPM group-analysis revealed some significant differences only for ankle angular progression. MSE was below 5.7°, MAE was below 4.5°, and error for maximum amplitudes was below 3.2°. The smartphone AI motion capture system with the trained multistage computer vision pipeline was able to detect, especially hip and knee angles in the sagittal plane during CMJs with high precision from a frontal view only.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助充满希望采纳,获得10
1秒前
2秒前
3秒前
qqe发布了新的文献求助10
5秒前
严天飞发布了新的文献求助10
5秒前
qwer完成签到,获得积分10
8秒前
9秒前
水木年华发布了新的文献求助10
9秒前
大个应助哆来米采纳,获得10
9秒前
10秒前
丘比特应助刘璐采纳,获得10
11秒前
朴实的钢笔完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
SheltonYang发布了新的文献求助10
12秒前
12秒前
13秒前
Mia完成签到,获得积分20
13秒前
13秒前
15秒前
充满希望发布了新的文献求助10
15秒前
17秒前
18秒前
19秒前
Owen应助冷傲火龙果采纳,获得10
19秒前
皮包医师发布了新的文献求助10
19秒前
20秒前
乐乐应助Hilda007采纳,获得10
20秒前
21秒前
科研小白完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
zhuguang_发布了新的文献求助10
21秒前
芳纶纤维完成签到,获得积分10
21秒前
22秒前
科研蟑螂发布了新的文献求助10
24秒前
25秒前
26秒前
芳芳子发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680026
求助须知:如何正确求助?哪些是违规求助? 4995634
关于积分的说明 15171452
捐赠科研通 4839819
什么是DOI,文献DOI怎么找? 2593648
邀请新用户注册赠送积分活动 1546668
关于科研通互助平台的介绍 1504752