AI‐smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps

运动学 脚踝 膝关节屈曲 反向运动 膝关节 运动捕捉 物理医学与康复 接头(建筑物) 髋关节屈曲 运动(物理) 运动范围 计算机科学 医学 跳跃 人工智能 物理疗法 解剖 工程类 物理 外科 经典力学 建筑工程 量子力学
作者
Philipp Barzyk,Philip Zimmermann,Manuel Stein,Daniel A. Keim,Markus Grüber
出处
期刊:European Journal of Sport Science [Informa]
标识
DOI:10.1002/ejsc.12186
摘要

Recently, AI-driven skeleton reconstruction tools that use multistage computer vision pipelines were designed to estimate 3D kinematics from 2D video sequences. In the present study, we validated a novel markerless, smartphone video-based artificial intelligence (AI) motion capture system for hip, knee, and ankle angles during countermovement jumps (CMJs). Eleven participants performed six CMJs. We used 2D videos created by a smartphone (Apple iPhone X, 4K, 60 fps) to create 24 different keypoints, which together built a full skeleton including joints and their connections. Body parts and skeletal keypoints were localized by calculating confidence maps using a multilevel convolutional neural network that integrated both spatial and temporal features. We calculated hip, knee, and ankle angles in the sagittal plane and compared it with the angles measured by a VICON system. We calculated the correlation between both method's angular progressions, mean squared error (MSE), mean average error (MAE), and the maximum and minimum angular error and run statistical parametric mapping (SPM) analysis. Pearson correlation coefficients (r) for hip, knee, and ankle angular progressions in the sagittal plane during the entire movement were 0.96, 0.99, and 0.87, respectively. SPM group-analysis revealed some significant differences only for ankle angular progression. MSE was below 5.7°, MAE was below 4.5°, and error for maximum amplitudes was below 3.2°. The smartphone AI motion capture system with the trained multistage computer vision pipeline was able to detect, especially hip and knee angles in the sagittal plane during CMJs with high precision from a frontal view only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助MADKAI采纳,获得10
刚刚
1秒前
1秒前
赘婿应助GGZ采纳,获得10
1秒前
阿盛完成签到,获得积分10
1秒前
1秒前
怕孤单的含羞草完成签到 ,获得积分10
2秒前
Muuu发布了新的文献求助10
2秒前
仁爱的乐枫完成签到,获得积分10
3秒前
3秒前
金润完成签到,获得积分10
4秒前
ZZ完成签到,获得积分10
4秒前
AteeqBaloch发布了新的文献求助10
5秒前
PaulLao完成签到,获得积分10
5秒前
5秒前
fleee发布了新的文献求助10
5秒前
5秒前
6秒前
Luyao发布了新的文献求助10
6秒前
海派Hi完成签到 ,获得积分10
6秒前
依依完成签到 ,获得积分10
7秒前
李健的小迷弟应助库外采纳,获得10
7秒前
yi完成签到 ,获得积分10
7秒前
kbj发布了新的文献求助10
7秒前
9秒前
佳言2009完成签到,获得积分10
10秒前
汉堡包应助漂亮的初蓝采纳,获得10
10秒前
hohokuz发布了新的文献求助10
11秒前
莫里完成签到,获得积分10
11秒前
zxz发布了新的文献求助10
11秒前
Luyao完成签到,获得积分10
12秒前
12秒前
12秒前
马甲完成签到,获得积分10
12秒前
科研通AI5应助xdf采纳,获得10
12秒前
周周完成签到,获得积分10
12秒前
Holybot完成签到,获得积分10
12秒前
14秒前
只道寻常完成签到,获得积分10
14秒前
fleee完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762