AI‐smartphone markerless motion capturing of hip, knee, and ankle joint kinematics during countermovement jumps

运动学 脚踝 膝关节屈曲 反向运动 膝关节 运动捕捉 物理医学与康复 接头(建筑物) 髋关节屈曲 运动(物理) 运动范围 计算机科学 医学 跳跃 人工智能 物理疗法 解剖 工程类 物理 外科 经典力学 建筑工程 量子力学
作者
Philipp Barzyk,Philip Zimmermann,Manuel Stein,Daniel A. Keim,Markus Grüber
出处
期刊:European Journal of Sport Science [Informa]
标识
DOI:10.1002/ejsc.12186
摘要

Recently, AI-driven skeleton reconstruction tools that use multistage computer vision pipelines were designed to estimate 3D kinematics from 2D video sequences. In the present study, we validated a novel markerless, smartphone video-based artificial intelligence (AI) motion capture system for hip, knee, and ankle angles during countermovement jumps (CMJs). Eleven participants performed six CMJs. We used 2D videos created by a smartphone (Apple iPhone X, 4K, 60 fps) to create 24 different keypoints, which together built a full skeleton including joints and their connections. Body parts and skeletal keypoints were localized by calculating confidence maps using a multilevel convolutional neural network that integrated both spatial and temporal features. We calculated hip, knee, and ankle angles in the sagittal plane and compared it with the angles measured by a VICON system. We calculated the correlation between both method's angular progressions, mean squared error (MSE), mean average error (MAE), and the maximum and minimum angular error and run statistical parametric mapping (SPM) analysis. Pearson correlation coefficients (r) for hip, knee, and ankle angular progressions in the sagittal plane during the entire movement were 0.96, 0.99, and 0.87, respectively. SPM group-analysis revealed some significant differences only for ankle angular progression. MSE was below 5.7°, MAE was below 4.5°, and error for maximum amplitudes was below 3.2°. The smartphone AI motion capture system with the trained multistage computer vision pipeline was able to detect, especially hip and knee angles in the sagittal plane during CMJs with high precision from a frontal view only.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆曼岚发布了新的文献求助10
刚刚
丘比特应助林佳一采纳,获得10
1秒前
1秒前
小七应助马马马采纳,获得30
2秒前
RR发布了新的文献求助10
2秒前
TT完成签到,获得积分20
2秒前
2秒前
杨金城完成签到,获得积分10
3秒前
科研公主完成签到,获得积分10
3秒前
4秒前
5秒前
Jack80发布了新的文献求助30
5秒前
大模型应助危机的雪旋采纳,获得10
6秒前
Xavier发布了新的文献求助10
6秒前
从容的丹南完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
7秒前
充电宝应助organicboy采纳,获得10
7秒前
7秒前
NexusExplorer应助岳红健采纳,获得10
7秒前
壮观砖家发布了新的文献求助20
9秒前
怕孤单应助个qwieid采纳,获得10
10秒前
10秒前
10秒前
Wang发布了新的文献求助30
10秒前
11秒前
Lynn怯霜静发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
jun发布了新的文献求助10
12秒前
晨雾关注了科研通微信公众号
13秒前
苏小狸完成签到,获得积分10
13秒前
13秒前
yaoli0823完成签到,获得积分10
13秒前
辛勤愚志完成签到 ,获得积分10
14秒前
14秒前
岳红健完成签到,获得积分10
14秒前
充电宝应助李浩然采纳,获得10
14秒前
14秒前
15秒前
15秒前
桐桐应助Reut_Hyu采纳,获得10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672