Sweat Gland Extraction From Optical Coherence Tomography Using Convolutional Neural Network

汗水 汗腺 指纹(计算) 人工智能 计算机科学 光学相干层析成像 解码方法 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 物理 病理 光学 内科学 算法 医学
作者
Yilong Zhang,Xiaojing Li,Haixia Wang,Ruxin Wang,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:4
标识
DOI:10.1109/tim.2022.3223077
摘要

As the Level 3 features of fingerprint, sweat pores have attracted attention in the field of fingerprint recognition and have been successfully applied to automatic fingerprint recognition systems. Traditional surface sweat pores become unclear or disappeared when the finger is contaminated, dried, or damaged. These unstable factors create major challenges in collecting sweat pores. Subcutaneous sweat glands belong to the internal tissues of fingers, which are stable and immune to external disturbances. This study investigated the extraction of subcutaneous sweat glands from fingertip volume data collected by optical coherence tomography (OCT). First, an improved multitask V-Net is proposed to extract subcutaneous sweat glands from OCT volume data. The network has an encoding path for features extraction and two decoding paths for extracting sweat gland boundaries and regions, respectively. The multitask scheme is designed to enhance the boundary and shape information of sweat glands and to prevent false extraction caused by interference from other tissues. Second, three mapping methods are proposed to address the problem of different spatial orientations of sweat glands. These three mapping methods, namely, global direct mapping (GDM), local direct mapping (LDM), and cylindrical fitting mapping (CFM), are used to map sweat glands to the surface fingerprint. Experiments are conducted in terms of sweat gland extraction, mapping, and matching. The qualitative and quantitative results show that the proposed network for sweat glands extraction outperforms other methods and that the LDM and CFM methods derive more accurate positions of sweat glands on the surface fingerprint than GDM. In the matching experiment, the equal error rate (EER) of dual-decoding V-Net (DDVN) reached 0.58%, which verified the recognition ability of sweat glands and the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yc采纳,获得10
1秒前
Dxc发布了新的文献求助10
1秒前
FFz完成签到,获得积分10
1秒前
Druid发布了新的文献求助10
1秒前
小蘑菇应助欢呼的若烟采纳,获得20
1秒前
2秒前
jingjing发布了新的文献求助10
2秒前
斯文败类应助圆滑的铁勺采纳,获得10
3秒前
3秒前
Muncy完成签到 ,获得积分10
3秒前
yu发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
情怀应助yy采纳,获得10
4秒前
5秒前
科研通AI5应助喜多采纳,获得10
5秒前
5秒前
七一安完成签到 ,获得积分10
6秒前
自由如风完成签到 ,获得积分10
6秒前
潇洒的马里奥完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科研通AI6应助仁爱的贝贝采纳,获得30
8秒前
Dxc完成签到,获得积分10
8秒前
小陈完成签到,获得积分10
9秒前
9秒前
zt涛完成签到 ,获得积分10
9秒前
chai发布了新的文献求助10
9秒前
小巧灯泡发布了新的文献求助10
10秒前
只穿平头裤衩完成签到,获得积分10
10秒前
忧郁小懒猪完成签到,获得积分10
10秒前
隐形曼青应助Druid采纳,获得10
10秒前
10秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
qwer发布了新的文献求助10
11秒前
11秒前
阮大楚发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4937256
求助须知:如何正确求助?哪些是违规求助? 4204376
关于积分的说明 13065366
捐赠科研通 3982001
什么是DOI,文献DOI怎么找? 2180433
邀请新用户注册赠送积分活动 1196350
关于科研通互助平台的介绍 1108366