Sweat Gland Extraction From Optical Coherence Tomography Using Convolutional Neural Network

汗水 汗腺 指纹(计算) 人工智能 计算机科学 光学相干层析成像 解码方法 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 物理 病理 光学 内科学 算法 医学
作者
Yilong Zhang,Xiaojing Li,Haixia Wang,Ruxin Wang,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:4
标识
DOI:10.1109/tim.2022.3223077
摘要

As the Level 3 features of fingerprint, sweat pores have attracted attention in the field of fingerprint recognition and have been successfully applied to automatic fingerprint recognition systems. Traditional surface sweat pores become unclear or disappeared when the finger is contaminated, dried, or damaged. These unstable factors create major challenges in collecting sweat pores. Subcutaneous sweat glands belong to the internal tissues of fingers, which are stable and immune to external disturbances. This study investigated the extraction of subcutaneous sweat glands from fingertip volume data collected by optical coherence tomography (OCT). First, an improved multitask V-Net is proposed to extract subcutaneous sweat glands from OCT volume data. The network has an encoding path for features extraction and two decoding paths for extracting sweat gland boundaries and regions, respectively. The multitask scheme is designed to enhance the boundary and shape information of sweat glands and to prevent false extraction caused by interference from other tissues. Second, three mapping methods are proposed to address the problem of different spatial orientations of sweat glands. These three mapping methods, namely, global direct mapping (GDM), local direct mapping (LDM), and cylindrical fitting mapping (CFM), are used to map sweat glands to the surface fingerprint. Experiments are conducted in terms of sweat gland extraction, mapping, and matching. The qualitative and quantitative results show that the proposed network for sweat glands extraction outperforms other methods and that the LDM and CFM methods derive more accurate positions of sweat glands on the surface fingerprint than GDM. In the matching experiment, the equal error rate (EER) of dual-decoding V-Net (DDVN) reached 0.58%, which verified the recognition ability of sweat glands and the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
yi完成签到,获得积分10
1秒前
1秒前
Vivian应助房靳采纳,获得30
2秒前
2秒前
3秒前
Lin完成签到,获得积分10
4秒前
4秒前
5秒前
奖品肉麻膏耶完成签到 ,获得积分10
5秒前
不安的晓灵完成签到 ,获得积分10
6秒前
Cleo应助lionel采纳,获得10
6秒前
QQQ完成签到,获得积分20
7秒前
拼搏黄豆发布了新的文献求助10
8秒前
南枝向暖完成签到 ,获得积分10
8秒前
FashionBoy应助要开心吖采纳,获得10
8秒前
王77驳回了慕青应助
9秒前
zfs完成签到,获得积分20
9秒前
伟大的鲁路皇完成签到,获得积分10
10秒前
10秒前
Cleo应助peng采纳,获得10
10秒前
cxh应助fuan采纳,获得10
11秒前
ndPAXB_able完成签到,获得积分10
11秒前
11秒前
ccr完成签到,获得积分10
11秒前
lyyyyy发布了新的文献求助10
12秒前
宁静致远完成签到,获得积分10
13秒前
lily336699发布了新的文献求助10
15秒前
f1mike110完成签到,获得积分10
16秒前
陈某发布了新的文献求助10
16秒前
Tim完成签到,获得积分10
16秒前
16秒前
危机的安容完成签到,获得积分10
16秒前
szw完成签到,获得积分10
17秒前
苏子轩完成签到,获得积分10
18秒前
19秒前
19秒前
peng完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271374
求助须知:如何正确求助?哪些是违规求助? 4429139
关于积分的说明 13787593
捐赠科研通 4307356
什么是DOI,文献DOI怎么找? 2363506
邀请新用户注册赠送积分活动 1359125
关于科研通互助平台的介绍 1322100