Sweat Gland Extraction From Optical Coherence Tomography Using Convolutional Neural Network

汗水 汗腺 指纹(计算) 人工智能 计算机科学 光学相干层析成像 解码方法 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 物理 病理 光学 内科学 算法 医学
作者
Yilong Zhang,Xiaojing Li,Haixia Wang,Ruxin Wang,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:4
标识
DOI:10.1109/tim.2022.3223077
摘要

As the Level 3 features of fingerprint, sweat pores have attracted attention in the field of fingerprint recognition and have been successfully applied to automatic fingerprint recognition systems. Traditional surface sweat pores become unclear or disappeared when the finger is contaminated, dried, or damaged. These unstable factors create major challenges in collecting sweat pores. Subcutaneous sweat glands belong to the internal tissues of fingers, which are stable and immune to external disturbances. This study investigated the extraction of subcutaneous sweat glands from fingertip volume data collected by optical coherence tomography (OCT). First, an improved multitask V-Net is proposed to extract subcutaneous sweat glands from OCT volume data. The network has an encoding path for features extraction and two decoding paths for extracting sweat gland boundaries and regions, respectively. The multitask scheme is designed to enhance the boundary and shape information of sweat glands and to prevent false extraction caused by interference from other tissues. Second, three mapping methods are proposed to address the problem of different spatial orientations of sweat glands. These three mapping methods, namely, global direct mapping (GDM), local direct mapping (LDM), and cylindrical fitting mapping (CFM), are used to map sweat glands to the surface fingerprint. Experiments are conducted in terms of sweat gland extraction, mapping, and matching. The qualitative and quantitative results show that the proposed network for sweat glands extraction outperforms other methods and that the LDM and CFM methods derive more accurate positions of sweat glands on the surface fingerprint than GDM. In the matching experiment, the equal error rate (EER) of dual-decoding V-Net (DDVN) reached 0.58%, which verified the recognition ability of sweat glands and the effectiveness of the proposed network.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助一杯半茶采纳,获得10
刚刚
汉堡包应助张世华采纳,获得10
4秒前
7秒前
所所应助Zengyuan采纳,获得10
7秒前
7秒前
7秒前
8秒前
科研通AI6应助大毛采纳,获得10
10秒前
11秒前
11秒前
科研小十三完成签到,获得积分10
12秒前
SD发布了新的文献求助10
13秒前
14秒前
小半夏汤完成签到,获得积分10
14秒前
伴乏发布了新的文献求助10
15秒前
浮游应助Ray采纳,获得10
16秒前
linmo发布了新的文献求助10
16秒前
17秒前
Zhengzy完成签到,获得积分10
18秒前
19秒前
薛枏完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
科研通AI2S应助CyS采纳,获得10
20秒前
李爱国应助CyS采纳,获得10
21秒前
hwyk发布了新的文献求助10
21秒前
xiaomuaixuexi完成签到,获得积分10
23秒前
23秒前
Function完成签到,获得积分10
23秒前
小J完成签到 ,获得积分10
23秒前
向日葵完成签到,获得积分10
24秒前
26秒前
Function发布了新的文献求助10
28秒前
科研通AI6应助森林采纳,获得10
28秒前
希望天下0贩的0应助linmo采纳,获得10
29秒前
张茜完成签到,获得积分10
29秒前
机智无春完成签到,获得积分10
29秒前
酷波er应助松下落叶采纳,获得10
29秒前
李爱国应助李白采纳,获得10
30秒前
淡淡土豆应助Ray采纳,获得20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533210
求助须知:如何正确求助?哪些是违规求助? 4621604
关于积分的说明 14579314
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499451
邀请新用户注册赠送积分活动 1479304
关于科研通互助平台的介绍 1450504