亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sweat Gland Extraction From Optical Coherence Tomography Using Convolutional Neural Network

汗水 汗腺 指纹(计算) 人工智能 计算机科学 光学相干层析成像 解码方法 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 物理 病理 光学 内科学 算法 医学
作者
Yilong Zhang,Xiaojing Li,Haixia Wang,Ruxin Wang,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:4
标识
DOI:10.1109/tim.2022.3223077
摘要

As the Level 3 features of fingerprint, sweat pores have attracted attention in the field of fingerprint recognition and have been successfully applied to automatic fingerprint recognition systems. Traditional surface sweat pores become unclear or disappeared when the finger is contaminated, dried, or damaged. These unstable factors create major challenges in collecting sweat pores. Subcutaneous sweat glands belong to the internal tissues of fingers, which are stable and immune to external disturbances. This study investigated the extraction of subcutaneous sweat glands from fingertip volume data collected by optical coherence tomography (OCT). First, an improved multitask V-Net is proposed to extract subcutaneous sweat glands from OCT volume data. The network has an encoding path for features extraction and two decoding paths for extracting sweat gland boundaries and regions, respectively. The multitask scheme is designed to enhance the boundary and shape information of sweat glands and to prevent false extraction caused by interference from other tissues. Second, three mapping methods are proposed to address the problem of different spatial orientations of sweat glands. These three mapping methods, namely, global direct mapping (GDM), local direct mapping (LDM), and cylindrical fitting mapping (CFM), are used to map sweat glands to the surface fingerprint. Experiments are conducted in terms of sweat gland extraction, mapping, and matching. The qualitative and quantitative results show that the proposed network for sweat glands extraction outperforms other methods and that the LDM and CFM methods derive more accurate positions of sweat glands on the surface fingerprint than GDM. In the matching experiment, the equal error rate (EER) of dual-decoding V-Net (DDVN) reached 0.58%, which verified the recognition ability of sweat glands and the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助恶恶么v采纳,获得10
10秒前
通科研完成签到 ,获得积分10
23秒前
51秒前
janie发布了新的文献求助10
57秒前
华仔应助janie采纳,获得50
1分钟前
Stephhen完成签到,获得积分10
1分钟前
1分钟前
wisteety完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
高兴的谷菱完成签到,获得积分20
1分钟前
壮观的画笔完成签到 ,获得积分10
1分钟前
3分钟前
莫冰雪完成签到 ,获得积分10
3分钟前
科研通AI2S应助zhang采纳,获得10
3分钟前
3分钟前
小巫发布了新的文献求助10
4分钟前
4分钟前
4分钟前
eccentric发布了新的文献求助10
4分钟前
4分钟前
eccentric完成签到,获得积分10
4分钟前
zhangxr发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Sandy完成签到 ,获得积分10
5分钟前
兴尽晚回舟完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
7分钟前
啊强完成签到 ,获得积分10
7分钟前
无限毛豆发布了新的文献求助10
7分钟前
xiaolang2004完成签到,获得积分10
7分钟前
上官若男应助无限毛豆采纳,获得10
7分钟前
莉莉安完成签到 ,获得积分10
7分钟前
8分钟前
knoren发布了新的文献求助10
8分钟前
DeaR完成签到 ,获得积分10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139548
求助须知:如何正确求助?哪些是违规求助? 2790430
关于积分的说明 7795269
捐赠科研通 2446905
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146