Sweat Gland Extraction From Optical Coherence Tomography Using Convolutional Neural Network

汗水 汗腺 指纹(计算) 人工智能 计算机科学 光学相干层析成像 解码方法 模式识别(心理学) 特征提取 匹配(统计) 计算机视觉 物理 病理 光学 内科学 算法 医学
作者
Yilong Zhang,Xiaojing Li,Haixia Wang,Ruxin Wang,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:4
标识
DOI:10.1109/tim.2022.3223077
摘要

As the Level 3 features of fingerprint, sweat pores have attracted attention in the field of fingerprint recognition and have been successfully applied to automatic fingerprint recognition systems. Traditional surface sweat pores become unclear or disappeared when the finger is contaminated, dried, or damaged. These unstable factors create major challenges in collecting sweat pores. Subcutaneous sweat glands belong to the internal tissues of fingers, which are stable and immune to external disturbances. This study investigated the extraction of subcutaneous sweat glands from fingertip volume data collected by optical coherence tomography (OCT). First, an improved multitask V-Net is proposed to extract subcutaneous sweat glands from OCT volume data. The network has an encoding path for features extraction and two decoding paths for extracting sweat gland boundaries and regions, respectively. The multitask scheme is designed to enhance the boundary and shape information of sweat glands and to prevent false extraction caused by interference from other tissues. Second, three mapping methods are proposed to address the problem of different spatial orientations of sweat glands. These three mapping methods, namely, global direct mapping (GDM), local direct mapping (LDM), and cylindrical fitting mapping (CFM), are used to map sweat glands to the surface fingerprint. Experiments are conducted in terms of sweat gland extraction, mapping, and matching. The qualitative and quantitative results show that the proposed network for sweat glands extraction outperforms other methods and that the LDM and CFM methods derive more accurate positions of sweat glands on the surface fingerprint than GDM. In the matching experiment, the equal error rate (EER) of dual-decoding V-Net (DDVN) reached 0.58%, which verified the recognition ability of sweat glands and the effectiveness of the proposed network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助邓代容采纳,获得10
刚刚
wang完成签到,获得积分10
刚刚
scc完成签到,获得积分10
刚刚
七子完成签到,获得积分10
刚刚
Earnestlee完成签到,获得积分10
1秒前
zzx396完成签到,获得积分0
2秒前
2秒前
K3完成签到,获得积分10
2秒前
hahasun完成签到,获得积分10
3秒前
过于喧嚣的孤独完成签到,获得积分10
3秒前
shin0324完成签到,获得积分10
4秒前
xzy998应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
摆烂完成签到 ,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
晶格畸变完成签到,获得积分10
5秒前
mufcyang完成签到,获得积分10
5秒前
大林完成签到,获得积分10
5秒前
Muhi完成签到,获得积分10
5秒前
汉堡包应助YF采纳,获得10
6秒前
Survive完成签到,获得积分10
6秒前
情怀应助yy采纳,获得10
6秒前
贵贵完成签到,获得积分10
7秒前
CipherSage应助蔡6705采纳,获得10
7秒前
lhcshuang发布了新的文献求助10
8秒前
陈富贵完成签到 ,获得积分10
9秒前
TanXu完成签到 ,获得积分10
9秒前
南冥完成签到 ,获得积分10
10秒前
无私的芹应助狂野忆文采纳,获得10
10秒前
所所应助狂野忆文采纳,获得10
10秒前
研友_VZG7GZ应助狂野忆文采纳,获得10
10秒前
斯文败类应助狂野忆文采纳,获得10
10秒前
无花果应助狂野忆文采纳,获得10
10秒前
上官若男应助狂野忆文采纳,获得10
10秒前
赘婿应助狂野忆文采纳,获得10
10秒前
顾矜应助狂野忆文采纳,获得10
10秒前
情怀应助狂野忆文采纳,获得10
10秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027