A deep thermal-guided approach for effective low-light visible image enhancement

计算机科学 人工智能 计算机视觉 可见光谱 GSM演进的增强数据速率 卷积神经网络 块(置换群论) 光场 热的 夜视 光学 数学 物理 几何学 气象学
作者
Yanpeng Cao,Xi Tong,Fan Wang,Jiangxin Yang,Yanlong Cao,Sabin Tiberius Strat,Christel-Loïc Tisse
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:522: 129-141 被引量:5
标识
DOI:10.1016/j.neucom.2022.12.007
摘要

Low-light visible image enhancement is important for various visual computing applications under conditions of poor lighting or hazardous weather. However, existing low-light image enhancement methods are mostly based on a single visible channel and cannot achieve satisfactory performance when processing real-captured nighttime images. In this paper, we attempt to utilize the complementary edge/texture features presented in thermal images to provide a stable guidance map to facilitate the enhancement of features extracted on low-light visible images. For this purpose, we propose a novel Central Difference Convolution-based Multi-Receptive-Field (CDC-MRF) module to effectively extract multi-scale edge/texture features on thermal images. Then, we design a thermal-guided convolutional block (TGCB) to enhance the low-light visible features under the guidance of thermal features. To our best knowledge, the proposed thermal-guided low-light image enhancement network (TGLLE-Net) represents the first attempt to perform low-light visible image enhancement by incorporating complementary information presented in both visible and thermal channels. The advantages of the proposed TGLLE-Net are twofold. Firstly, it is capable of suppressing severe noise disturbance presented in low-light visible images under the guidance of low-frequency components in thermal images. Moreover, TGLLE-Net can promote detail/appearance restoration of objects with distinctive thermal features (e.g., pedestrians, vehicles, and buildings). Both objective and subjective evaluation results demonstrate that our proposed TGLLE-Net outperforms state-of-the-art methods in terms of restoration accuracy, visual perception, and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致初晴完成签到,获得积分10
1秒前
bea发布了新的文献求助10
1秒前
慕青应助冷艳元柏采纳,获得10
2秒前
MchemG应助收拾收拾采纳,获得50
2秒前
3秒前
Fei关注了科研通微信公众号
3秒前
4秒前
上岸上岸发布了新的文献求助10
5秒前
6秒前
6秒前
ashleyjr完成签到,获得积分10
7秒前
7秒前
cheese完成签到,获得积分10
7秒前
7秒前
斯文败类应助111采纳,获得10
8秒前
9秒前
hhj发布了新的文献求助10
9秒前
NexusExplorer应助港崽宝宝采纳,获得10
10秒前
10秒前
estate完成签到,获得积分10
10秒前
10秒前
LEMONS应助荀万声采纳,获得10
11秒前
11秒前
12秒前
KuKu发布了新的文献求助10
12秒前
13秒前
13秒前
yangjian发布了新的文献求助30
13秒前
HoiChan发布了新的文献求助30
15秒前
乾乾发布了新的文献求助10
16秒前
李健应助贾舒涵采纳,获得10
16秒前
王大D发布了新的文献求助10
16秒前
Sweetpear完成签到,获得积分10
17秒前
光亮惜寒发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
水木应助犹豫紫丝采纳,获得10
20秒前
小野猫完成签到,获得积分20
21秒前
SYLH应助孙兆杰采纳,获得10
21秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105