已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep thermal-guided approach for effective low-light visible image enhancement

计算机科学 人工智能 计算机视觉 可见光谱 GSM演进的增强数据速率 卷积神经网络 块(置换群论) 光场 热的 夜视 光学 数学 物理 几何学 气象学
作者
Yanpeng Cao,Xi Tong,Fan Wang,Jiangxin Yang,Yanlong Cao,Sabin Tiberius Strat,Christel-Loïc Tisse
出处
期刊:Neurocomputing [Elsevier]
卷期号:522: 129-141 被引量:5
标识
DOI:10.1016/j.neucom.2022.12.007
摘要

Low-light visible image enhancement is important for various visual computing applications under conditions of poor lighting or hazardous weather. However, existing low-light image enhancement methods are mostly based on a single visible channel and cannot achieve satisfactory performance when processing real-captured nighttime images. In this paper, we attempt to utilize the complementary edge/texture features presented in thermal images to provide a stable guidance map to facilitate the enhancement of features extracted on low-light visible images. For this purpose, we propose a novel Central Difference Convolution-based Multi-Receptive-Field (CDC-MRF) module to effectively extract multi-scale edge/texture features on thermal images. Then, we design a thermal-guided convolutional block (TGCB) to enhance the low-light visible features under the guidance of thermal features. To our best knowledge, the proposed thermal-guided low-light image enhancement network (TGLLE-Net) represents the first attempt to perform low-light visible image enhancement by incorporating complementary information presented in both visible and thermal channels. The advantages of the proposed TGLLE-Net are twofold. Firstly, it is capable of suppressing severe noise disturbance presented in low-light visible images under the guidance of low-frequency components in thermal images. Moreover, TGLLE-Net can promote detail/appearance restoration of objects with distinctive thermal features (e.g., pedestrians, vehicles, and buildings). Both objective and subjective evaluation results demonstrate that our proposed TGLLE-Net outperforms state-of-the-art methods in terms of restoration accuracy, visual perception, and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ll发布了新的文献求助10
2秒前
2秒前
搜集达人应助颜沛文采纳,获得10
3秒前
会撒娇的含巧完成签到,获得积分10
4秒前
MgO关闭了MgO文献求助
4秒前
爱看文章的我完成签到 ,获得积分10
7秒前
NexusExplorer应助欧阳宇采纳,获得10
7秒前
领导范儿应助52hezi采纳,获得30
7秒前
9秒前
Henry应助勤劳善良的胖蜜蜂采纳,获得200
11秒前
11秒前
小智0921完成签到,获得积分10
11秒前
11秒前
可靠访蕊完成签到 ,获得积分10
12秒前
科目三应助herogyus采纳,获得10
13秒前
林青伟发布了新的文献求助10
15秒前
higgs发布了新的文献求助10
15秒前
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Singularity应助科研通管家采纳,获得20
16秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
颜沛文发布了新的文献求助10
17秒前
爆米花应助欧梨欧梨采纳,获得10
20秒前
欧阳宇发布了新的文献求助10
20秒前
会飞的鱼完成签到,获得积分10
22秒前
52hezi发布了新的文献求助30
23秒前
舟夏完成签到 ,获得积分10
23秒前
JamesPei应助乐乐乐乐乐乐采纳,获得10
23秒前
镜花水月完成签到,获得积分10
27秒前
FashionBoy应助义气的黑夜采纳,获得10
29秒前
七只狐狸发布了新的文献求助20
32秒前
34秒前
瘦瘦的映安完成签到,获得积分10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150394
求助须知:如何正确求助?哪些是违规求助? 2801510
关于积分的说明 7845179
捐赠科研通 2459074
什么是DOI,文献DOI怎么找? 1308905
科研通“疑难数据库(出版商)”最低求助积分说明 628583
版权声明 601727