A deep thermal-guided approach for effective low-light visible image enhancement

计算机科学 人工智能 计算机视觉 可见光谱 GSM演进的增强数据速率 卷积神经网络 块(置换群论) 光场 热的 夜视 光学 数学 物理 几何学 气象学
作者
Yanpeng Cao,Xi Tong,Fan Wang,Jiangxin Yang,Yanlong Cao,Sabin Tiberius Strat,Christel-Loïc Tisse
出处
期刊:Neurocomputing [Elsevier]
卷期号:522: 129-141 被引量:5
标识
DOI:10.1016/j.neucom.2022.12.007
摘要

Low-light visible image enhancement is important for various visual computing applications under conditions of poor lighting or hazardous weather. However, existing low-light image enhancement methods are mostly based on a single visible channel and cannot achieve satisfactory performance when processing real-captured nighttime images. In this paper, we attempt to utilize the complementary edge/texture features presented in thermal images to provide a stable guidance map to facilitate the enhancement of features extracted on low-light visible images. For this purpose, we propose a novel Central Difference Convolution-based Multi-Receptive-Field (CDC-MRF) module to effectively extract multi-scale edge/texture features on thermal images. Then, we design a thermal-guided convolutional block (TGCB) to enhance the low-light visible features under the guidance of thermal features. To our best knowledge, the proposed thermal-guided low-light image enhancement network (TGLLE-Net) represents the first attempt to perform low-light visible image enhancement by incorporating complementary information presented in both visible and thermal channels. The advantages of the proposed TGLLE-Net are twofold. Firstly, it is capable of suppressing severe noise disturbance presented in low-light visible images under the guidance of low-frequency components in thermal images. Moreover, TGLLE-Net can promote detail/appearance restoration of objects with distinctive thermal features (e.g., pedestrians, vehicles, and buildings). Both objective and subjective evaluation results demonstrate that our proposed TGLLE-Net outperforms state-of-the-art methods in terms of restoration accuracy, visual perception, and computational efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
山木发布了新的文献求助10
1秒前
111完成签到,获得积分10
2秒前
2秒前
3秒前
别有乾坤完成签到,获得积分10
3秒前
5秒前
zcf发布了新的文献求助10
5秒前
6秒前
微笑的桐完成签到 ,获得积分10
6秒前
7秒前
小二郎应助suda采纳,获得10
7秒前
开心发布了新的文献求助10
8秒前
山木完成签到,获得积分20
8秒前
科研通AI6应助lv采纳,获得10
8秒前
桐桐应助天真的枕头采纳,获得10
8秒前
12591发布了新的文献求助10
8秒前
8秒前
8秒前
yyy完成签到 ,获得积分10
9秒前
地啦啦啦发布了新的文献求助10
9秒前
清图完成签到,获得积分10
9秒前
SciGPT应助清脆苑博采纳,获得10
9秒前
菠菜应助AnnieSsy采纳,获得150
9秒前
科研通AI2S应助谦让的落雁采纳,获得10
10秒前
10秒前
伊人不羁发布了新的文献求助10
11秒前
Zhe完成签到,获得积分10
11秒前
Hello应助甜蜜帽子采纳,获得10
12秒前
小瑄发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
冰洁儿完成签到,获得积分10
13秒前
bkagyin应助zhengyalan采纳,获得10
13秒前
AN发布了新的文献求助10
13秒前
贝贝发布了新的文献求助10
13秒前
JamesPei应助光亮笑蓝采纳,获得10
15秒前
头秃科研人完成签到,获得积分10
15秒前
科目三应助urologywang采纳,获得10
16秒前
奥暖将完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578007
求助须知:如何正确求助?哪些是违规求助? 4663017
关于积分的说明 14744201
捐赠科研通 4603681
什么是DOI,文献DOI怎么找? 2526640
邀请新用户注册赠送积分活动 1496203
关于科研通互助平台的介绍 1465642