Slack-Factor-Based Fuzzy Support Vector Machine for Class Imbalance Problems

超平面 支持向量机 模糊逻辑 人工智能 班级(哲学) 机器学习 计算机科学 隶属函数 数据挖掘 功能(生物学) 构造(python库) 噪音(视频) 模糊集 数学 模式识别(心理学) 程序设计语言 生物 图像(数学) 进化生物学 几何学
作者
Jinjun Ren,Yuping Wang,Xiyan Deng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (6): 1-26 被引量:4
标识
DOI:10.1145/3579050
摘要

Class imbalance and noisy data widely exist in real-world problems, and the support vector machine (SVM) is hard to construct good classifiers on these data. Fuzzy SVMs (FSVMs), as variants of SVM, use a fuzzy membership function both to reflect the samples’ importance and to remove the impact of noises, and employ cost-sensitive technology to address the class imbalance. They can handle the noise and class imbalance problems in many cases; however, the fuzzy membership functions are often affected by the class imbalance data, leading to inaccurate measures for samples’ performance and affecting the performance of FSVMs. To solve this problem, we design a new fuzzy membership function and combine it with cost-sensitive learning to deal with the class imbalance problem with noisy data, named Slack-Factor-based FSVM (SFFSVM). In SFFSVM, the relative distances between samples and an estimated hyperplane, called slack factors, are used to define the fuzzy membership function. To eliminate the impact of class imbalance on the function and gain more accurate samples’ importance, we rectify the importance according to the positional relationship between the estimated hyperplane and the optimal hyperplane of the problem, and the slack factors of samples. Comprehensive experiments on artificial and real-world datasets demonstrate that SFFSVM outperforms other comparative methods on F1, MCC, and AUC-PR metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ttl发布了新的文献求助10
刚刚
goofs完成签到,获得积分10
1秒前
tt完成签到,获得积分10
1秒前
AAAAA完成签到,获得积分10
1秒前
tbb发布了新的文献求助10
1秒前
love发布了新的文献求助10
1秒前
1秒前
陈文江完成签到,获得积分10
1秒前
糖炒栗子完成签到 ,获得积分10
1秒前
小趴菜完成签到,获得积分10
1秒前
大模型应助甜甜语堂采纳,获得10
2秒前
drzz完成签到,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
Akim应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
spc68应助脆脆鲨采纳,获得10
3秒前
3秒前
害羞的板凳完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
NameCYQ完成签到,获得积分10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651821
求助须知:如何正确求助?哪些是违规求助? 4786050
关于积分的说明 15056478
捐赠科研通 4810468
什么是DOI,文献DOI怎么找? 2573210
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488036