亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Slack-Factor-Based Fuzzy Support Vector Machine for Class Imbalance Problems

超平面 支持向量机 模糊逻辑 人工智能 班级(哲学) 机器学习 计算机科学 隶属函数 数据挖掘 功能(生物学) 构造(python库) 噪音(视频) 模糊集 数学 模式识别(心理学) 程序设计语言 生物 图像(数学) 进化生物学 几何学
作者
Jinjun Ren,Yuping Wang,Xiyan Deng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (6): 1-26 被引量:4
标识
DOI:10.1145/3579050
摘要

Class imbalance and noisy data widely exist in real-world problems, and the support vector machine (SVM) is hard to construct good classifiers on these data. Fuzzy SVMs (FSVMs), as variants of SVM, use a fuzzy membership function both to reflect the samples’ importance and to remove the impact of noises, and employ cost-sensitive technology to address the class imbalance. They can handle the noise and class imbalance problems in many cases; however, the fuzzy membership functions are often affected by the class imbalance data, leading to inaccurate measures for samples’ performance and affecting the performance of FSVMs. To solve this problem, we design a new fuzzy membership function and combine it with cost-sensitive learning to deal with the class imbalance problem with noisy data, named Slack-Factor-based FSVM (SFFSVM). In SFFSVM, the relative distances between samples and an estimated hyperplane, called slack factors, are used to define the fuzzy membership function. To eliminate the impact of class imbalance on the function and gain more accurate samples’ importance, we rectify the importance according to the positional relationship between the estimated hyperplane and the optimal hyperplane of the problem, and the slack factors of samples. Comprehensive experiments on artificial and real-world datasets demonstrate that SFFSVM outperforms other comparative methods on F1, MCC, and AUC-PR metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助shinn采纳,获得10
1秒前
3秒前
4秒前
壮观大炮完成签到,获得积分10
7秒前
13秒前
17秒前
17秒前
22秒前
shinn发布了新的文献求助10
24秒前
思柔完成签到,获得积分10
26秒前
28秒前
shinn发布了新的文献求助10
28秒前
坚守完成签到 ,获得积分10
34秒前
yjr发布了新的文献求助10
34秒前
35秒前
搞怪的白云完成签到 ,获得积分10
36秒前
江江江完成签到,获得积分20
37秒前
40秒前
44秒前
瑕不掩瑜发布了新的文献求助10
44秒前
英姑应助吉吉采纳,获得10
46秒前
48秒前
莫愁完成签到 ,获得积分10
50秒前
充电宝应助shinn采纳,获得10
52秒前
53秒前
57秒前
58秒前
Owen应助发发采纳,获得30
58秒前
1分钟前
瑕不掩瑜完成签到,获得积分10
1分钟前
石榴汁的书完成签到,获得积分10
1分钟前
1分钟前
qzp完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
寻道图强举报spring求助涉嫌违规
1分钟前
shinn发布了新的文献求助10
1分钟前
1分钟前
带刺的玫瑰李博应助CGDGD采纳,获得10
1分钟前
顾矜应助宇宙超人007008采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112