A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images

人工智能 计算机科学 图像扭曲 深度学习 计算机视觉 稳健性(进化) 基本事实 生物化学 基因 化学
作者
Jian Gao,Jin Liu,Shunping Ji
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 446-461 被引量:22
标识
DOI:10.1016/j.isprsjprs.2022.12.012
摘要

In this paper, we propose a general deep learning based framework, named Sat-MVSF, to perform three-dimensional (3D) reconstruction of the Earth's surface from multi-view optical satellite images. The framework is a complete processing pipeline, including pre-processing, a multi-view stereo (MVS) network for satellite imagery (Sat-MVSNet), and post-processing. The pre-processing handles the geometric and radiometric configuration of the multi-view images and their cropping. The cropped multi-view patches are then fed into Sat-MVSNet, which includes deep feature extraction, rational polynomial camera (RPC) warping, pyramid cost volume construction, regularization, and regression, to obtain the height maps. The error matches are then filtered out and a digital surface model (DSM) is generated in the post-processing. Considering the complexity and diversity of real-world scenes, we also introduce a self-refinement strategy that does not require any ground-truth labels to enhance the performance and robustness of the Sat-MVSF framework. We comprehensively compare the proposed framework with popular commercial software and open-source methods, to demonstrate the potential of the proposed deep learning framework. On the WHU-TLC dataset, where the images are captured with a three-line camera (TLC), the proposed framework outperforms all the other solutions in terms of reconstruction fineness, and also outperforms most of the other methods in terms of efficiency. On the challenging MVS3D dataset, where the images are captured by the WorldView-3 satellite at different times and seasons, the proposed framework also exceeds the existing methods when using the model pretrained on aerial images and the introduced self-refinement strategy, demonstrating a high generalization ability. We also note that the lack of training samples hinders research in this field, and the availability of more high-quality open-source training data will greatly accelerate the research into deep learning based MVS satellite image reconstruction. The code will be available at https://gpcv.whu.edu.cn/data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tangtang完成签到,获得积分10
刚刚
学渣本渣发布了新的文献求助10
刚刚
宋1234发布了新的文献求助10
1秒前
1秒前
1秒前
务实的罡完成签到,获得积分10
1秒前
1秒前
3秒前
领导范儿应助安详可燕采纳,获得30
3秒前
会飞的猪发布了新的文献求助10
4秒前
4秒前
Jasper应助1111采纳,获得10
4秒前
共享精神应助MrRen采纳,获得10
4秒前
文静千凡完成签到,获得积分10
5秒前
秃头披风侠完成签到,获得积分10
5秒前
科研通AI2S应助whuhustwit采纳,获得10
7秒前
完美世界应助超帅的怡采纳,获得10
7秒前
枣核儿发布了新的文献求助10
8秒前
兰格格完成签到,获得积分10
8秒前
zyfqpc应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得20
9秒前
JamesPei应助科研通管家采纳,获得30
9秒前
无花果应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
诸葛白发布了新的文献求助10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
LZN完成签到,获得积分10
12秒前
orixero应助SX0000采纳,获得10
12秒前
小蚂蚁完成签到,获得积分10
12秒前
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449