Design of High-Entropy Alloy Coating for Cavitation Erosion Resistance by Different Energy-Induced Dynamic Cyclic Behaviors

材料科学 涂层 微观结构 空化 合金 马氏体 表面工程 复合材料 表面能 冶金 热力学 物理
作者
Haobo Cao,Guoliang Hou,Zhiqiang Fu,Junkai Ma,Yulong An,Huidi Zhou,Jianmin Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (2): 3651-3663 被引量:15
标识
DOI:10.1021/acsami.2c19210
摘要

The dispute over the effect of cavitation heat on material surface intensifies the fuzziness of cavitation erosion (CE) mechanism and limits the development of protective materials. Here, an anti-CE Al10Cr28Co28Ni34 high-entropy alloy (HEA) coating with single face-centered cubic (FCC), prepared by high-velocity oxy-fuel (HVOF) spraying technologies, was designed by inducing mechanical and thermal energy-induced behaviors to transform or counteract each other. The results showed that, on the one hand, this coating underwent the refinement of the average grain size from 1.22 to 1.02 μm, the increase in dislocation density from 1.28 × 10-10 to 1.83 × 10-10 m-2, and the martensitic transformation from FCC to body-centered cubic (BCC) under the cavitation load; on the other hand, cavitation heat could indeed induce grain growth and realize structural relaxation, which confirmed that cavitation heat acting on the material surface at temperatures theoretically above 1206.28 K also played a significant role in the CE mechanism. That is, the surface microstructure of this coating was always in a dynamic cycle during the CE process. Therefore, the coating achieved the simultaneous absorption of mechanical impact energy and thermal energy released by the bubble collapse while effectively avoiding the overenrichment of crystal defects and finally exhibited a CE resistance 2 times better than that of the classical AlCrCoFeNi HEA coating. This design concept of inducing different energy restraints or neutralization through the special response behaviors of surface microstructure provides a completely new way for the development of CE-resistant materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jennie完成签到,获得积分10
刚刚
安沁完成签到,获得积分10
1秒前
甘乐完成签到,获得积分10
1秒前
西柚发布了新的文献求助10
2秒前
远山完成签到 ,获得积分10
2秒前
BigBoss关注了科研通微信公众号
2秒前
3秒前
ly007应助跃鱼采纳,获得10
3秒前
充电宝应助xixidong采纳,获得10
3秒前
3秒前
4秒前
迷你的老四应助布丁拿铁采纳,获得10
4秒前
哈人的猫完成签到,获得积分10
4秒前
orixero应助zyy采纳,获得10
4秒前
4秒前
zydd发布了新的文献求助10
5秒前
David发布了新的文献求助10
5秒前
5秒前
张不胖发布了新的文献求助10
5秒前
123465完成签到,获得积分10
5秒前
SS完成签到,获得积分10
6秒前
6秒前
lidm完成签到,获得积分10
7秒前
8秒前
orixero应助anpucle采纳,获得20
8秒前
KerwinYang完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助尺素寸心采纳,获得30
9秒前
长孙随阴完成签到,获得积分20
10秒前
冬谎完成签到,获得积分10
11秒前
11秒前
所所应助笙笙采纳,获得10
11秒前
gzyyb完成签到,获得积分10
11秒前
11秒前
Shine完成签到 ,获得积分10
11秒前
喜嘻发布了新的文献求助10
11秒前
12秒前
CodeCraft应助葉芊羽采纳,获得10
12秒前
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952