亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel approach for apple leaf disease image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss

人工智能 像素 分割 计算机视觉 计算机科学 模式识别(心理学) 数学
作者
Shisong Zhu,Wanli Ma,Jiangwen Lu,Bo Ren,Chunyang Wang,Jianlong Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107539-107539 被引量:44
标识
DOI:10.1016/j.compag.2022.107539
摘要

In complex environments, overlapping leaves and uneven light can make pixels of leaf edges difficult to identify, resulting in a poor segmentation performance of the target leaf. In addition, the pixel ratio imbalance between the background area and the target area is the main reason that undermines the accuracy of spot extraction. To address these problems, a novel two-stage DeepLabv3+ with adaptive loss is proposed for the segmentation of apple leaf disease images in complex scenes. The proposed adaptive loss adds a modulation factor to the cross-entropy (CE) loss that can reduce the weight of losses generated by easily classified pixels. Therefore, it allows the model to focus more on hard-to-classify pixels during learning, thus improving segmentation accuracy. The novel two-stage model, consisting of Leaf-DeepLabv3+ and Disease-DeepLabv3+, is named LD-DeepLabv3+. In the first stage of the proposed model, Leaf-DeepLabv3+ is employed to extract the leaves from the complex environment. At this stage, the receptive field block (RFB) and the reverse attention (RA) module are introduced to improve the perception ability of the model for different sizes of blades and their edges. Then, the Disease-DeepLabv3+ is designed to segment disease spots from the erased background leaf images in the second stage of the proposed model. In the Disease-DeepLabv3+, the rates of the dilated convolution in atrous spatial pyramid pooling (ASPP) are adjusted to make it more suitable for extracting smaller targets, and the channel attention block (CAB) is introduced to highlight significant spot information and suppress unimportant information. The experimental results show that the proposed method, which combines LD-DeepLabv3+ with the adaptive loss, reaches 98.70% intersection over union (IoU) for leaf segmentation and 86.56% IoU for spot extraction. Compared with the two-stage model DUNet, the proposed method improves the segmentation accuracy of leaves and spots by 0.93% and 4.27%, respectively. Moreover, the total number of parameters and floating points of operations of the proposed method are only 16.96% and 18.25% of those of DUNet, respectively. Hence, the proposed method can provide an effective solution to extract leaves and disease spots in complex environments and has lower computational costs. This makes it suitable for deployment on mobile devices for applications in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃毒娘发布了新的文献求助10
4秒前
12秒前
量子星尘发布了新的文献求助10
34秒前
49秒前
yx_cheng应助科研通管家采纳,获得10
58秒前
Ava应助科研通管家采纳,获得10
58秒前
yx_cheng应助科研通管家采纳,获得10
58秒前
yx_cheng应助科研通管家采纳,获得10
58秒前
温柔亦寒完成签到,获得积分10
1分钟前
1分钟前
RAIN发布了新的文献求助10
2分钟前
小马甲应助顺利的尔芙采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
jjy完成签到 ,获得积分10
2分钟前
所所应助RAIN采纳,获得10
2分钟前
2分钟前
烟花应助科研通管家采纳,获得10
2分钟前
顺利的尔芙完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
思源应助风中的雅柏采纳,获得10
3分钟前
3分钟前
3分钟前
mama完成签到 ,获得积分10
3分钟前
lixuebin完成签到 ,获得积分10
4分钟前
星际舟完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Ava应助顺利的尔芙采纳,获得10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
4分钟前
丝垚完成签到 ,获得积分10
5分钟前
Akim应助无风采纳,获得10
5分钟前
孙雪君完成签到,获得积分10
6分钟前
孙雪君发布了新的文献求助10
6分钟前
xiaolang2004完成签到,获得积分10
6分钟前
无花果应助lu采纳,获得10
6分钟前
无用的老董西完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
无风完成签到 ,获得积分10
6分钟前
nickel完成签到,获得积分10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008289
求助须知:如何正确求助?哪些是违规求助? 3548035
关于积分的说明 11298654
捐赠科研通 3282878
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188