已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel approach for apple leaf disease image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss

人工智能 像素 分割 计算机视觉 计算机科学 模式识别(心理学) 数学
作者
Shisong Zhu,Wanli Ma,Jing‐Rong Lu,Bo Ren,Chunyang Wang,Jianlong Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107539-107539 被引量:21
标识
DOI:10.1016/j.compag.2022.107539
摘要

In complex environments, overlapping leaves and uneven light can make pixels of leaf edges difficult to identify, resulting in a poor segmentation performance of the target leaf. In addition, the pixel ratio imbalance between the background area and the target area is the main reason that undermines the accuracy of spot extraction. To address these problems, a novel two-stage DeepLabv3+ with adaptive loss is proposed for the segmentation of apple leaf disease images in complex scenes. The proposed adaptive loss adds a modulation factor to the cross-entropy (CE) loss that can reduce the weight of losses generated by easily classified pixels. Therefore, it allows the model to focus more on hard-to-classify pixels during learning, thus improving segmentation accuracy. The novel two-stage model, consisting of Leaf-DeepLabv3+ and Disease-DeepLabv3+, is named LD-DeepLabv3+. In the first stage of the proposed model, Leaf-DeepLabv3+ is employed to extract the leaves from the complex environment. At this stage, the receptive field block (RFB) and the reverse attention (RA) module are introduced to improve the perception ability of the model for different sizes of blades and their edges. Then, the Disease-DeepLabv3+ is designed to segment disease spots from the erased background leaf images in the second stage of the proposed model. In the Disease-DeepLabv3+, the rates of the dilated convolution in atrous spatial pyramid pooling (ASPP) are adjusted to make it more suitable for extracting smaller targets, and the channel attention block (CAB) is introduced to highlight significant spot information and suppress unimportant information. The experimental results show that the proposed method, which combines LD-DeepLabv3+ with the adaptive loss, reaches 98.70% intersection over union (IoU) for leaf segmentation and 86.56% IoU for spot extraction. Compared with the two-stage model DUNet, the proposed method improves the segmentation accuracy of leaves and spots by 0.93% and 4.27%, respectively. Moreover, the total number of parameters and floating points of operations of the proposed method are only 16.96% and 18.25% of those of DUNet, respectively. Hence, the proposed method can provide an effective solution to extract leaves and disease spots in complex environments and has lower computational costs. This makes it suitable for deployment on mobile devices for applications in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的冰旋完成签到 ,获得积分10
1秒前
肉松发布了新的文献求助10
1秒前
黄维完成签到,获得积分10
2秒前
4秒前
肉松完成签到,获得积分10
9秒前
10秒前
12秒前
橘橘橘子皮完成签到 ,获得积分10
13秒前
充电宝应助起风了采纳,获得10
14秒前
zxr发布了新的文献求助10
19秒前
Akim应助美满的天薇采纳,获得10
22秒前
kyt发布了新的文献求助30
23秒前
23秒前
Singularity应助LJT采纳,获得10
24秒前
杳鸢应助kento采纳,获得100
25秒前
笨笨西牛完成签到 ,获得积分10
28秒前
28秒前
大模型应助coll88采纳,获得10
29秒前
Singularity应助从容之云采纳,获得10
30秒前
含蓄的明雪应助木叶采纳,获得10
31秒前
嗯哼应助只为春庭月采纳,获得10
31秒前
zz完成签到 ,获得积分10
32秒前
华仔应助野性的凌瑶采纳,获得10
32秒前
33秒前
33秒前
33秒前
33秒前
oceanao应助kyt采纳,获得10
34秒前
36秒前
司空蓝发布了新的文献求助10
38秒前
39秒前
akito发布了新的文献求助10
39秒前
要努力坚持啊完成签到,获得积分10
39秒前
超帅的dz发布了新的文献求助10
39秒前
44秒前
酷波er应助超帅的dz采纳,获得10
44秒前
华仔应助科研通管家采纳,获得10
44秒前
852应助科研通管家采纳,获得10
44秒前
李健应助科研通管家采纳,获得10
44秒前
科目三应助科研通管家采纳,获得10
44秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158461
求助须知:如何正确求助?哪些是违规求助? 2809636
关于积分的说明 7882903
捐赠科研通 2468254
什么是DOI,文献DOI怎么找? 1314017
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601956