清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel approach for apple leaf disease image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss

人工智能 像素 分割 计算机视觉 计算机科学 模式识别(心理学) 数学
作者
Shisong Zhu,Wanli Ma,Jiangwen Lu,Bo Ren,Chunyang Wang,Jianlong Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107539-107539 被引量:44
标识
DOI:10.1016/j.compag.2022.107539
摘要

In complex environments, overlapping leaves and uneven light can make pixels of leaf edges difficult to identify, resulting in a poor segmentation performance of the target leaf. In addition, the pixel ratio imbalance between the background area and the target area is the main reason that undermines the accuracy of spot extraction. To address these problems, a novel two-stage DeepLabv3+ with adaptive loss is proposed for the segmentation of apple leaf disease images in complex scenes. The proposed adaptive loss adds a modulation factor to the cross-entropy (CE) loss that can reduce the weight of losses generated by easily classified pixels. Therefore, it allows the model to focus more on hard-to-classify pixels during learning, thus improving segmentation accuracy. The novel two-stage model, consisting of Leaf-DeepLabv3+ and Disease-DeepLabv3+, is named LD-DeepLabv3+. In the first stage of the proposed model, Leaf-DeepLabv3+ is employed to extract the leaves from the complex environment. At this stage, the receptive field block (RFB) and the reverse attention (RA) module are introduced to improve the perception ability of the model for different sizes of blades and their edges. Then, the Disease-DeepLabv3+ is designed to segment disease spots from the erased background leaf images in the second stage of the proposed model. In the Disease-DeepLabv3+, the rates of the dilated convolution in atrous spatial pyramid pooling (ASPP) are adjusted to make it more suitable for extracting smaller targets, and the channel attention block (CAB) is introduced to highlight significant spot information and suppress unimportant information. The experimental results show that the proposed method, which combines LD-DeepLabv3+ with the adaptive loss, reaches 98.70% intersection over union (IoU) for leaf segmentation and 86.56% IoU for spot extraction. Compared with the two-stage model DUNet, the proposed method improves the segmentation accuracy of leaves and spots by 0.93% and 4.27%, respectively. Moreover, the total number of parameters and floating points of operations of the proposed method are only 16.96% and 18.25% of those of DUNet, respectively. Hence, the proposed method can provide an effective solution to extract leaves and disease spots in complex environments and has lower computational costs. This makes it suitable for deployment on mobile devices for applications in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangfeidong发布了新的文献求助10
3秒前
无奈代秋应助温茶采纳,获得50
4秒前
46秒前
zx发布了新的文献求助10
51秒前
zx完成签到 ,获得积分10
1分钟前
糟糕的翅膀完成签到,获得积分10
1分钟前
危机的妖妖完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
gsji完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助ah采纳,获得10
1分钟前
TTRRCEB发布了新的文献求助10
1分钟前
1分钟前
ah发布了新的文献求助10
2分钟前
在水一方应助ah采纳,获得10
2分钟前
ah完成签到,获得积分20
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
usami42发布了新的文献求助10
2分钟前
fufufu123完成签到 ,获得积分10
2分钟前
chcmy完成签到 ,获得积分0
3分钟前
朱明完成签到 ,获得积分10
4分钟前
maggiexjl完成签到,获得积分10
4分钟前
西山菩提完成签到,获得积分10
4分钟前
王世卉完成签到,获得积分10
4分钟前
Claudia完成签到,获得积分10
4分钟前
薛家泰完成签到 ,获得积分10
4分钟前
老福贵儿完成签到 ,获得积分10
5分钟前
yindi1991完成签到 ,获得积分10
5分钟前
yu完成签到 ,获得积分10
6分钟前
iman完成签到,获得积分10
6分钟前
大医仁心完成签到 ,获得积分10
6分钟前
时间煮雨我煮鱼完成签到,获得积分10
7分钟前
小丸子完成签到 ,获得积分0
8分钟前
飞龙在天完成签到 ,获得积分10
8分钟前
完美世界应助usami42采纳,获得10
9分钟前
daixan89完成签到 ,获得积分10
9分钟前
juan完成签到 ,获得积分10
10分钟前
热心市民完成签到 ,获得积分10
10分钟前
量子星尘发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910416
求助须知:如何正确求助?哪些是违规求助? 4186251
关于积分的说明 12999272
捐赠科研通 3953698
什么是DOI,文献DOI怎么找? 2168049
邀请新用户注册赠送积分活动 1186496
关于科研通互助平台的介绍 1093681