已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel approach for apple leaf disease image segmentation in complex scenes based on two-stage DeepLabv3+ with adaptive loss

人工智能 像素 分割 计算机视觉 计算机科学 模式识别(心理学) 数学
作者
Shisong Zhu,Wanli Ma,Jiangwen Lu,Bo Ren,Chunyang Wang,Jianlong Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:204: 107539-107539 被引量:44
标识
DOI:10.1016/j.compag.2022.107539
摘要

In complex environments, overlapping leaves and uneven light can make pixels of leaf edges difficult to identify, resulting in a poor segmentation performance of the target leaf. In addition, the pixel ratio imbalance between the background area and the target area is the main reason that undermines the accuracy of spot extraction. To address these problems, a novel two-stage DeepLabv3+ with adaptive loss is proposed for the segmentation of apple leaf disease images in complex scenes. The proposed adaptive loss adds a modulation factor to the cross-entropy (CE) loss that can reduce the weight of losses generated by easily classified pixels. Therefore, it allows the model to focus more on hard-to-classify pixels during learning, thus improving segmentation accuracy. The novel two-stage model, consisting of Leaf-DeepLabv3+ and Disease-DeepLabv3+, is named LD-DeepLabv3+. In the first stage of the proposed model, Leaf-DeepLabv3+ is employed to extract the leaves from the complex environment. At this stage, the receptive field block (RFB) and the reverse attention (RA) module are introduced to improve the perception ability of the model for different sizes of blades and their edges. Then, the Disease-DeepLabv3+ is designed to segment disease spots from the erased background leaf images in the second stage of the proposed model. In the Disease-DeepLabv3+, the rates of the dilated convolution in atrous spatial pyramid pooling (ASPP) are adjusted to make it more suitable for extracting smaller targets, and the channel attention block (CAB) is introduced to highlight significant spot information and suppress unimportant information. The experimental results show that the proposed method, which combines LD-DeepLabv3+ with the adaptive loss, reaches 98.70% intersection over union (IoU) for leaf segmentation and 86.56% IoU for spot extraction. Compared with the two-stage model DUNet, the proposed method improves the segmentation accuracy of leaves and spots by 0.93% and 4.27%, respectively. Moreover, the total number of parameters and floating points of operations of the proposed method are only 16.96% and 18.25% of those of DUNet, respectively. Hence, the proposed method can provide an effective solution to extract leaves and disease spots in complex environments and has lower computational costs. This makes it suitable for deployment on mobile devices for applications in agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
printzhao发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
kentonchow应助铮铮采纳,获得10
6秒前
傻丢完成签到 ,获得积分10
8秒前
8秒前
风趣小蜜蜂完成签到 ,获得积分10
8秒前
慕青应助五音不全汪采纳,获得10
9秒前
归尘发布了新的文献求助10
11秒前
奕柯完成签到,获得积分10
12秒前
科研通AI6应助小甘采纳,获得30
12秒前
13秒前
bkagyin应助杭谷波采纳,获得10
13秒前
FashionBoy应助Jonathan采纳,获得10
13秒前
15秒前
云帆发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
孤独的以菱完成签到 ,获得积分10
19秒前
一只快乐的小比熊完成签到 ,获得积分10
19秒前
111发布了新的文献求助10
19秒前
4114发布了新的文献求助10
22秒前
wx发布了新的文献求助10
22秒前
23秒前
叮当完成签到,获得积分10
24秒前
huangfan完成签到,获得积分20
25秒前
Laraineww完成签到 ,获得积分10
26秒前
风清扬发布了新的文献求助10
26秒前
ILS发布了新的文献求助30
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
大模型应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
情怀应助科研通管家采纳,获得10
27秒前
FashionBoy应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
28秒前
LPPQBB应助科研通管家采纳,获得50
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356