White Blood Cells Image Classification Based on Radiomics and Deep Learning

人工智能 深度学习 计算机科学 无线电技术 特征提取 模式识别(心理学) 分割 卷积神经网络 机器学习
作者
Wenna Wu,Shuhan Liao,Zhentai Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 124036-124052 被引量:3
标识
DOI:10.1109/access.2022.3223669
摘要

White blood cell (WBC) identification performance is highly correlated with the quality of the extracted features, with radiomic features having greater resolution and more detailed information and deep features having more robust semantic information. This research integrates these two aspects to creatively suggest a WBC classification model based on radiomics and deep learning. This research suggests a brand-new method for extracting radiomic features from WBC images as well as a dual-branch feature fusion network RCTNet based on CNN and Transformer for extracting deep features. The radiomic feature extraction method not only has a simple segmentation algorithm but also solves the problem of cell adhesion, can obtain higher quality shape, color, and texture features without segmenting intact cells, and is more generalizable. RCTNet can extract more critical and recognizable deep features from WBC nuclei, avoiding the influence of too much redundant and invalid information on the results, and has better performance than several existing CNN models. We compared the classification outcomes based on radiomics with those based on deep learning to confirm the efficacy of the WBC classification model based on radiomics and deep learning suggested in this research. The experimental results demonstrated that combining radiomic features and deep features significantly improved the classification accuracy, with an AUC exceeding 0.9995, accuracy, sensitivity, specificity, precision, and F1-score reaching 0.9880, 0.9823, 0.9883, 0.9968, and 0.9881, respectively. The model has significant research significance in clinical applications and aids physicians in improving diagnosis and screening for diseases of WBCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
niu完成签到 ,获得积分10
刚刚
GG完成签到,获得积分10
1秒前
果酱君完成签到,获得积分10
1秒前
liuhang完成签到,获得积分20
1秒前
龚成明完成签到,获得积分10
1秒前
dididi完成签到,获得积分10
1秒前
FYJY完成签到,获得积分10
2秒前
大个应助李向来采纳,获得10
2秒前
qianyu完成签到,获得积分10
3秒前
香菜张完成签到,获得积分10
3秒前
谨慎朝雪应助deest采纳,获得50
3秒前
dzjin发布了新的文献求助10
4秒前
冷傲山彤完成签到 ,获得积分10
4秒前
搜集达人应助颜好采纳,获得10
5秒前
干净的芮完成签到,获得积分10
5秒前
5秒前
爆米花应助lcls采纳,获得10
5秒前
6秒前
spoon1026完成签到,获得积分10
6秒前
HPLC完成签到 ,获得积分10
6秒前
baniu发布了新的文献求助50
6秒前
乐观化蛹完成签到,获得积分20
6秒前
ztt27999完成签到,获得积分10
6秒前
顾矜应助万万没想到采纳,获得10
7秒前
7秒前
今后应助LuoJiajun采纳,获得10
8秒前
工大机械完成签到,获得积分10
9秒前
hanlin完成签到,获得积分10
10秒前
10秒前
amyyyyyyy发布了新的文献求助10
10秒前
今后应助Mike采纳,获得10
11秒前
徐星军完成签到,获得积分10
11秒前
小旭不会飞完成签到,获得积分10
11秒前
无奈的醉冬完成签到,获得积分10
11秒前
研友_Raven完成签到,获得积分10
11秒前
11秒前
9970发布了新的文献求助10
11秒前
袁同学完成签到,获得积分10
12秒前
12秒前
XT666完成签到,获得积分10
12秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413682
求助须知:如何正确求助?哪些是违规求助? 3015924
关于积分的说明 8873014
捐赠科研通 2703663
什么是DOI,文献DOI怎么找? 1482400
科研通“疑难数据库(出版商)”最低求助积分说明 685272
邀请新用户注册赠送积分活动 680008