亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

White Blood Cells Image Classification Based on Radiomics and Deep Learning

人工智能 深度学习 计算机科学 无线电技术 特征提取 模式识别(心理学) 分割 卷积神经网络 机器学习
作者
Wenna Wu,Shuhan Liao,Zhentai Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 124036-124052 被引量:3
标识
DOI:10.1109/access.2022.3223669
摘要

White blood cell (WBC) identification performance is highly correlated with the quality of the extracted features, with radiomic features having greater resolution and more detailed information and deep features having more robust semantic information. This research integrates these two aspects to creatively suggest a WBC classification model based on radiomics and deep learning. This research suggests a brand-new method for extracting radiomic features from WBC images as well as a dual-branch feature fusion network RCTNet based on CNN and Transformer for extracting deep features. The radiomic feature extraction method not only has a simple segmentation algorithm but also solves the problem of cell adhesion, can obtain higher quality shape, color, and texture features without segmenting intact cells, and is more generalizable. RCTNet can extract more critical and recognizable deep features from WBC nuclei, avoiding the influence of too much redundant and invalid information on the results, and has better performance than several existing CNN models. We compared the classification outcomes based on radiomics with those based on deep learning to confirm the efficacy of the WBC classification model based on radiomics and deep learning suggested in this research. The experimental results demonstrated that combining radiomic features and deep features significantly improved the classification accuracy, with an AUC exceeding 0.9995, accuracy, sensitivity, specificity, precision, and F1-score reaching 0.9880, 0.9823, 0.9883, 0.9968, and 0.9881, respectively. The model has significant research significance in clinical applications and aids physicians in improving diagnosis and screening for diseases of WBCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
西门浩宇发布了新的文献求助10
6秒前
53秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
1分钟前
siqilinwillbephd完成签到 ,获得积分10
1分钟前
于是乎完成签到 ,获得积分10
1分钟前
2分钟前
结实熠彤发布了新的文献求助10
2分钟前
科研dog完成签到 ,获得积分10
2分钟前
Ava应助阿亮采纳,获得10
2分钟前
2分钟前
mellow完成签到,获得积分10
2分钟前
2分钟前
玄音完成签到,获得积分10
2分钟前
绿竹发布了新的文献求助20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
李健的小迷弟应助绿竹采纳,获得10
2分钟前
2分钟前
今后应助舒服的吗喽采纳,获得10
3分钟前
sowhat完成签到 ,获得积分10
3分钟前
Asdaf完成签到,获得积分10
3分钟前
3分钟前
blenx完成签到,获得积分10
3分钟前
阿亮发布了新的文献求助10
3分钟前
海绵宝宝完成签到 ,获得积分10
4分钟前
天人合一完成签到,获得积分10
4分钟前
XuchaoD完成签到,获得积分10
4分钟前
幽默的忆霜完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
pzhzy123完成签到,获得积分10
4分钟前
wangermazi完成签到,获得积分0
4分钟前
TXZ06发布了新的文献求助30
4分钟前
4分钟前
4分钟前
绿竹发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957035
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111186
捐赠科研通 3234072
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264