Abnormal Data Recovery of Structural Health Monitoring for Ancient City Wall Using Deep Learning Neural Network

结构健康监测 离群值 数据挖掘 人工神经网络 新知识检测 计算机科学 缺少数据 工程类 维数(图论) 新颖性 人工智能 机器学习 结构工程 数学 哲学 纯数学 神学
作者
Yang Deng,Hanwen Ju,Yuhang Li,Yungang Hu,Aiqun Li
出处
期刊:International Journal of Architectural Heritage [Taylor & Francis]
卷期号:: 1-19 被引量:4
标识
DOI:10.1080/15583058.2022.2153234
摘要

Continuous structural health monitoring is of great importance to preventive conservation for ancient architectural heritages. However, abnormal monitoring data may trigger false alarming of structural damages. SHM of ancient buildings also needs abnormal data recovering. Most of the existing studies used the neural network with single input dimension and forward prediction to recover abnormal data, which is difficult to accurately predict long data sequences. This study developed a novel abnormal data recovery framework. The main novelty of the proposed framework is that the input and output configurations of the GRU model are optimized. Meanwhile, to make full use of the forward and backward information of the abnormal data sequence, bidirectional prediction is used to improve the prediction accuracy. The framework is implemented in the abnormal monitoring data recovering for an ancient city wall built 600 years ago in Beijing. Three types of abnormal data, including outlier, drift, and missing, are considered in this study. The results reveal that the proposed framework has high accuracy in abnormal data recovering of strain and crack width. The recovered data has the same regular diurnal variation as the normal monitoring data. The linear correlation between the structural responses and wall temperature gets obviously improved after data recovering. The proposed framework shows great capacity of abnormal data recovery for structural static responses of ancient buildings, which are usually influenced by environmental temperature variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llcllc发布了新的文献求助10
刚刚
子车半烟完成签到,获得积分10
1秒前
2秒前
Emmalee完成签到,获得积分10
2秒前
Susan完成签到,获得积分10
3秒前
LucienS发布了新的文献求助10
5秒前
5秒前
所所应助GAO采纳,获得10
7秒前
falling_learning完成签到 ,获得积分10
8秒前
欧阳铭发布了新的文献求助10
11秒前
丘比特应助Emmalee采纳,获得30
11秒前
彭于晏应助马66采纳,获得10
12秒前
12秒前
12秒前
14秒前
15秒前
星空下的皮先生完成签到,获得积分10
17秒前
陈tl完成签到,获得积分10
17秒前
18秒前
练习者发布了新的文献求助10
19秒前
21秒前
自信的雪糕完成签到,获得积分10
24秒前
领导范儿应助孩子气采纳,获得10
25秒前
练习者完成签到,获得积分10
26秒前
小晚完成签到,获得积分10
27秒前
27秒前
feng发布了新的文献求助20
27秒前
28秒前
sevenvnennn完成签到,获得积分10
28秒前
王了了完成签到 ,获得积分10
31秒前
31秒前
1111发布了新的文献求助10
32秒前
bias发布了新的文献求助10
32秒前
饼藏发布了新的文献求助10
32秒前
合泽河完成签到,获得积分10
33秒前
34秒前
宝宝慧儿7发布了新的文献求助10
35秒前
生姜完成签到 ,获得积分10
35秒前
未央歌完成签到 ,获得积分10
36秒前
岳晓彤发布了新的文献求助10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578