Abnormal Data Recovery of Structural Health Monitoring for Ancient City Wall Using Deep Learning Neural Network

结构健康监测 离群值 数据挖掘 人工神经网络 新知识检测 计算机科学 缺少数据 工程类 维数(图论) 新颖性 人工智能 机器学习 结构工程 数学 哲学 纯数学 神学
作者
Yang Deng,Hanwen Ju,Yuhang Li,Yungang Hu,Aiqun Li
出处
期刊:International Journal of Architectural Heritage [Informa]
卷期号:: 1-19 被引量:4
标识
DOI:10.1080/15583058.2022.2153234
摘要

Continuous structural health monitoring is of great importance to preventive conservation for ancient architectural heritages. However, abnormal monitoring data may trigger false alarming of structural damages. SHM of ancient buildings also needs abnormal data recovering. Most of the existing studies used the neural network with single input dimension and forward prediction to recover abnormal data, which is difficult to accurately predict long data sequences. This study developed a novel abnormal data recovery framework. The main novelty of the proposed framework is that the input and output configurations of the GRU model are optimized. Meanwhile, to make full use of the forward and backward information of the abnormal data sequence, bidirectional prediction is used to improve the prediction accuracy. The framework is implemented in the abnormal monitoring data recovering for an ancient city wall built 600 years ago in Beijing. Three types of abnormal data, including outlier, drift, and missing, are considered in this study. The results reveal that the proposed framework has high accuracy in abnormal data recovering of strain and crack width. The recovered data has the same regular diurnal variation as the normal monitoring data. The linear correlation between the structural responses and wall temperature gets obviously improved after data recovering. The proposed framework shows great capacity of abnormal data recovery for structural static responses of ancient buildings, which are usually influenced by environmental temperature variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JIE完成签到 ,获得积分10
1秒前
喜悦静枫发布了新的文献求助10
1秒前
猪猪发布了新的文献求助10
2秒前
3秒前
3秒前
Hello应助正直的沛凝采纳,获得10
3秒前
好困应助宇帅采纳,获得10
3秒前
hh完成签到,获得积分10
3秒前
柴柴完成签到,获得积分10
3秒前
11发布了新的文献求助10
3秒前
4秒前
li-naer发布了新的文献求助10
5秒前
5秒前
柠橙发布了新的文献求助10
5秒前
多晒太阳完成签到,获得积分20
5秒前
笨蛋小章发布了新的文献求助10
7秒前
诚心闭月发布了新的文献求助10
8秒前
xuuuuu完成签到,获得积分10
8秒前
8秒前
iNk应助曾经二娘采纳,获得20
9秒前
樱桃猴子应助猪猪采纳,获得10
9秒前
liushoujia发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
Lynette发布了新的文献求助10
13秒前
aguo完成签到 ,获得积分10
14秒前
SciGPT应助龙哥采纳,获得10
15秒前
15秒前
15秒前
风原完成签到,获得积分20
15秒前
FashionBoy应助sldelibra采纳,获得10
15秒前
15秒前
洇澧发布了新的文献求助10
16秒前
我是老大应助JJJMMM采纳,获得10
16秒前
科研通AI2S应助喜悦静枫采纳,获得10
16秒前
伍中道完成签到,获得积分10
16秒前
white完成签到,获得积分10
17秒前
江湖棋客发布了新的文献求助10
17秒前
科研通AI2S应助翟淑雨采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152244
求助须知:如何正确求助?哪些是违规求助? 2803512
关于积分的说明 7854215
捐赠科研通 2461077
什么是DOI,文献DOI怎么找? 1310159
科研通“疑难数据库(出版商)”最低求助积分说明 629126
版权声明 601765