A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction

人工蜂群算法 初始化 均方误差 计算机科学 稳健性(进化) 人工神经网络 进化算法 平均绝对百分比误差 水质 均方预测误差 算法 人工智能 机器学习 统计 数学 生态学 基因 生物 生物化学 化学 程序设计语言
作者
Lingxuan Chen,Tunhua Wu,Zhaocai Wang,Xiaolong Lin,Yixuan Cai
出处
期刊:Ecological Indicators [Elsevier]
卷期号:146: 109882-109882 被引量:96
标识
DOI:10.1016/j.ecolind.2023.109882
摘要

With the accelerated industrialization and urbanization process, water pollution in rivers is being increasingly worsened, and has caused a series of ecological and environmental issues. The prediction of river water quality index (WQI) is a prerequisite for river pollution prevention and management. However, the water quality data series is non-smooth and non-linear, and a strong coupling relationship between different water quality parameters that influence each other is observed, making it an inevitable problem to accurately predict water quality parameters. To this end, a combination of machine learning and intelligent optimization algorithms was hereby used to break this dilemma. Specifically, a Back Propagation Neural Network (BPNN) model was established using the Artificial Bee Colony (ABC) algorithm, with the three adaptive evolutionary strategies, i.e., dynamic adaptive factors, probability selection and gradient initialization combined to form the Adaptive Evolutionary Artificial Bee Colony (AEABC) algorithm. The experimental results of this algorithm demonstrate that the AEABC-BPNN model only requires 14 iterations to converge in this case. The predictions of WQI can reduce the error evaluation indicators of mean square error (MSE) to 0.2745, which is at least 25.2% lower than those of the rest algorithms compared, and the mean absolute percentage error (MAPE) is lower than 7.58%. In four WQIs, the prediction interval coverage percentage (PICP) reaches 100%. Besides, robustness testing experiments were also designed to verify that the AEABC-BPNN model still outperforms the rest of the algorithms in terms of prediction accuracy when guided by historical error data. The proposed model plays a pivotal role in water pollution management in rivers and lakes, and has scientific significance for future water environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮尔槐完成签到 ,获得积分10
刚刚
公冶凡波完成签到,获得积分10
1秒前
香蕉觅云应助森森采纳,获得10
3秒前
3秒前
5秒前
lyn关闭了lyn文献求助
5秒前
hbuhfl发布了新的文献求助10
6秒前
kk完成签到 ,获得积分10
7秒前
8秒前
yar应助jxn采纳,获得10
8秒前
9秒前
9秒前
11秒前
终成发布了新的文献求助50
12秒前
qianchimo发布了新的文献求助30
13秒前
落后妖妖完成签到,获得积分10
14秒前
12发布了新的文献求助10
15秒前
18秒前
从容芮应助神勇盼晴采纳,获得10
18秒前
20秒前
23秒前
26秒前
26秒前
27秒前
张小馨完成签到 ,获得积分10
28秒前
Meng应助张大橘采纳,获得10
28秒前
英俊的铭应助文英俊采纳,获得10
29秒前
森森发布了新的文献求助10
30秒前
30秒前
小曾发布了新的文献求助10
31秒前
12完成签到,获得积分10
31秒前
31秒前
hujiwen020给hujiwen020的求助进行了留言
31秒前
杨旺完成签到 ,获得积分10
32秒前
cadn完成签到,获得积分10
32秒前
远道发布了新的文献求助10
32秒前
gyyy发布了新的文献求助10
32秒前
34秒前
34秒前
曹晓颖发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298162
求助须知:如何正确求助?哪些是违规求助? 2933155
关于积分的说明 8462374
捐赠科研通 2606150
什么是DOI,文献DOI怎么找? 1422871
科研通“疑难数据库(出版商)”最低求助积分说明 661541
邀请新用户注册赠送积分活动 644895