A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction

人工蜂群算法 初始化 均方误差 计算机科学 稳健性(进化) 人工神经网络 进化算法 平均绝对百分比误差 水质 均方预测误差 算法 人工智能 机器学习 统计 数学 生态学 生物化学 化学 生物 基因 程序设计语言
作者
Lingxuan Chen,Tunhua Wu,Zhaocai Wang,Xiaolong Lin,Yixuan Cai
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:146: 109882-109882 被引量:96
标识
DOI:10.1016/j.ecolind.2023.109882
摘要

With the accelerated industrialization and urbanization process, water pollution in rivers is being increasingly worsened, and has caused a series of ecological and environmental issues. The prediction of river water quality index (WQI) is a prerequisite for river pollution prevention and management. However, the water quality data series is non-smooth and non-linear, and a strong coupling relationship between different water quality parameters that influence each other is observed, making it an inevitable problem to accurately predict water quality parameters. To this end, a combination of machine learning and intelligent optimization algorithms was hereby used to break this dilemma. Specifically, a Back Propagation Neural Network (BPNN) model was established using the Artificial Bee Colony (ABC) algorithm, with the three adaptive evolutionary strategies, i.e., dynamic adaptive factors, probability selection and gradient initialization combined to form the Adaptive Evolutionary Artificial Bee Colony (AEABC) algorithm. The experimental results of this algorithm demonstrate that the AEABC-BPNN model only requires 14 iterations to converge in this case. The predictions of WQI can reduce the error evaluation indicators of mean square error (MSE) to 0.2745, which is at least 25.2% lower than those of the rest algorithms compared, and the mean absolute percentage error (MAPE) is lower than 7.58%. In four WQIs, the prediction interval coverage percentage (PICP) reaches 100%. Besides, robustness testing experiments were also designed to verify that the AEABC-BPNN model still outperforms the rest of the algorithms in terms of prediction accuracy when guided by historical error data. The proposed model plays a pivotal role in water pollution management in rivers and lakes, and has scientific significance for future water environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllldjhdy完成签到 ,获得积分10
刚刚
爆米花应助ayayaya采纳,获得10
刚刚
笑羽完成签到,获得积分0
刚刚
1秒前
逃亡的小狗完成签到,获得积分10
1秒前
1秒前
zyx完成签到 ,获得积分10
1秒前
一次性过发布了新的文献求助10
1秒前
乐乐应助zly采纳,获得10
1秒前
2秒前
2秒前
宴之敖者完成签到,获得积分10
2秒前
轻风发布了新的文献求助10
2秒前
2秒前
归尘应助yuaasusanaann采纳,获得10
2秒前
小马甲应助七柒采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Re完成签到,获得积分10
3秒前
liu发布了新的文献求助30
4秒前
李健应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
渡111应助科研通管家采纳,获得50
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
牛爷爷应助科研通管家采纳,获得10
4秒前
爱吃香菜完成签到,获得积分10
4秒前
陆拾壩发布了新的文献求助10
4秒前
华仔应助科研通管家采纳,获得30
4秒前
yar应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
坦率的匪应助科研通管家采纳,获得20
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
lucifer应助科研通管家采纳,获得10
5秒前
晓巨人发布了新的文献求助10
5秒前
5秒前
苏杉杉发布了新的文献求助10
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650