A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction

人工蜂群算法 初始化 均方误差 计算机科学 稳健性(进化) 人工神经网络 进化算法 平均绝对百分比误差 水质 均方预测误差 算法 人工智能 机器学习 统计 数学 生态学 基因 生物 生物化学 化学 程序设计语言
作者
Lingxuan Chen,Tunhua Wu,Zhaocai Wang,Xiaolong Lin,Yixuan Cai
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:146: 109882-109882 被引量:96
标识
DOI:10.1016/j.ecolind.2023.109882
摘要

With the accelerated industrialization and urbanization process, water pollution in rivers is being increasingly worsened, and has caused a series of ecological and environmental issues. The prediction of river water quality index (WQI) is a prerequisite for river pollution prevention and management. However, the water quality data series is non-smooth and non-linear, and a strong coupling relationship between different water quality parameters that influence each other is observed, making it an inevitable problem to accurately predict water quality parameters. To this end, a combination of machine learning and intelligent optimization algorithms was hereby used to break this dilemma. Specifically, a Back Propagation Neural Network (BPNN) model was established using the Artificial Bee Colony (ABC) algorithm, with the three adaptive evolutionary strategies, i.e., dynamic adaptive factors, probability selection and gradient initialization combined to form the Adaptive Evolutionary Artificial Bee Colony (AEABC) algorithm. The experimental results of this algorithm demonstrate that the AEABC-BPNN model only requires 14 iterations to converge in this case. The predictions of WQI can reduce the error evaluation indicators of mean square error (MSE) to 0.2745, which is at least 25.2% lower than those of the rest algorithms compared, and the mean absolute percentage error (MAPE) is lower than 7.58%. In four WQIs, the prediction interval coverage percentage (PICP) reaches 100%. Besides, robustness testing experiments were also designed to verify that the AEABC-BPNN model still outperforms the rest of the algorithms in terms of prediction accuracy when guided by historical error data. The proposed model plays a pivotal role in water pollution management in rivers and lakes, and has scientific significance for future water environmental protection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
louiselin完成签到 ,获得积分10
刚刚
科研通AI5应助ginkrice采纳,获得10
刚刚
liuQ发布了新的文献求助10
2秒前
2秒前
FashionBoy应助负责书竹采纳,获得30
2秒前
pan发布了新的文献求助10
4秒前
4秒前
慕青应助figure采纳,获得10
4秒前
Lyh应助王赟晖采纳,获得10
4秒前
5秒前
尊敬的诺言完成签到 ,获得积分10
5秒前
5秒前
Akim应助memorise采纳,获得10
6秒前
7秒前
李爱国应助每天100次采纳,获得10
8秒前
薄荷心完成签到 ,获得积分10
9秒前
彭shuai发布了新的文献求助10
10秒前
10秒前
kk发布了新的文献求助10
10秒前
sure发布了新的文献求助10
12秒前
nnmmuu完成签到,获得积分10
12秒前
12秒前
浮游应助王赟晖采纳,获得10
14秒前
薛wen晶完成签到 ,获得积分10
14秒前
14秒前
kyhzxy发布了新的文献求助10
15秒前
田様应助长情的八宝粥采纳,获得10
16秒前
彭shuai完成签到,获得积分10
17秒前
丙子哥发布了新的文献求助10
18秒前
华仔应助kk采纳,获得10
18秒前
褚香旋发布了新的文献求助10
18秒前
curry发布了新的文献求助10
18秒前
19秒前
FashionBoy应助Enma采纳,获得10
19秒前
27发布了新的文献求助10
20秒前
浮游应助我666采纳,获得10
20秒前
20秒前
liuQ完成签到,获得积分10
22秒前
彭于晏应助jinsijia采纳,获得10
22秒前
科研通AI5应助野性的宛筠采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5170167
求助须知:如何正确求助?哪些是违规求助? 4361034
关于积分的说明 13578192
捐赠科研通 4208183
什么是DOI,文献DOI怎么找? 2307983
邀请新用户注册赠送积分活动 1307420
关于科研通互助平台的介绍 1254227