过电位
法拉第效率
催化作用
材料科学
无机化学
电化学
化学工程
电解
无定形固体
吸附
化学
物理化学
电极
结晶学
有机化学
电解质
工程类
作者
Muhammad Awais Akram,Botao Zhu,Jiejin Cai,Shuaibo Qin,Xiangdie Hou,Peng Jin,Feng Wang,Yunpeng He,Xiaohong Li,Lai Feng
出处
期刊:Small
[Wiley]
日期:2023-01-08
卷期号:19 (15)
被引量:14
标识
DOI:10.1002/smll.202206966
摘要
Abstract Electrochemical reduction reaction of nitrate (NITRR) provides a sustainable route toward the green synthesis of ammonia. Nevertheless, it remains challenging to achieve high‐performance electrocatalysts for NITRR especially at low overpotentials. In this work, hierarchical nanospheres consisting of polycrystalline Iridium&copper (Ir&Cu) and amorphous Cu 2 O (Cu x Ir y O z NS) have been fabricated. The optimal species Cu 0.86 Ir 0.14 O z delivers excellent catalytic performance with a desirable NH 3 yield rate (YR) up to 0.423 mmol h −1 cm −2 (or 4.8 mg h −1 mg cat −1 ) and a high NH 3 Faradaic efficiency (FE) over 90% at a low overpotential of 0.69 V (or 0 V RHE ), where hydrogen evolution reaction (HER) is almost negligible. The electrolyzer toward NITRR and hydrazine oxidation (HzOR) is constructed for the first time with an electrode pair of Cu 0.86 Ir 0.14 O z //Cu 0.86 Ir 0.14 O z , yielding a high energy efficiency (EE) up to 87%. Density functional theory (DFT) calculations demonstrate that the dispersed Ir atom provides active site that not only promotes the NO 3 − adsorption but also modulates the H adsorption/desorption to facilitate the proton supply for the hydrogenation of *N, hence boosting the NITRR. This work thus points to the importance of both morphological/structural and compositional engineering for achieving the highly efficient catalysts toward NITRR.
科研通智能强力驱动
Strongly Powered by AbleSci AI