Fusion level of satellite and UAV image data for soil salinity inversion in the coastal area of the Yellow River Delta

遥感 多光谱图像 反演(地质) 融合 环境科学 传感器融合 卫星 图像融合 土壤盐分 计算机科学 地质学 土壤科学 人工智能 土壤水分 古生物学 语言学 哲学 构造盆地 航空航天工程 工程类
作者
Ying-Rui Ma,Weiya Zhu,Zan Zhang,Hongyan Chen,Gengxing Zhao,Peng Liu
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (19-24): 7039-7063 被引量:6
标识
DOI:10.1080/01431161.2022.2155080
摘要

Rapid and accurate determination of soil salt content (SSC) and its spatial distribution are of great significance for the prevention and improvement of soil salinization. Satellite and unmanned aerial vehicle (UAV) remote sensing data have complementary advantages. The fusion of satellite and UAV multisource remote sensing data to improve the accuracy of SSC based on inversion methods has become a hot topic, and the appropriate fusion level of multisource remote sensing data needs to be explored and determined. The objective of this study was to determine the appropriate fusion level of Sentinel-2A Multispectral Instrument (Sentinel-MSI) and UAV image data for SSC inversion by comparing the fusion effect of three levels (spectral data, spectral index, and spectral model). A numerical regression method was employed to analyse the relationship between Sentinel-MSI and UAV image data (MSI-UAV), and MSI-UAV data were fused at different levels. Then, the appropriate fusion level and best inversion model were optimized to realize regional SSC inversion. The results indicate that spectral data fusion was better than spectral index fusion for enhancing the SSC spectral response, with the correlation between spectral indices and SSC increasing by 0.139–0.167 after fusion. After spectral data fusion, the model improved the SSC inversion accuracy most obviously, with a calibration R2 of 0.623, validation R2 of 0.571, and ratio of performance to deviation (RPD) of 1.821. Therefore, spectral data fusion was found to be superior in enhancing the spectral response of soil salinity and in improving the accuracy of the estimation model. This research optimized spectral data fusion as the appropriate fusion level of MSI-UAV for SSC inversion and formed a set of high-precision MSI-UAV multisource remote sensing fusion inversion approaches for SSC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助星辰采纳,获得10
2秒前
xiaofenzi完成签到 ,获得积分10
2秒前
初柒完成签到,获得积分20
3秒前
liukang172完成签到,获得积分10
3秒前
bingchem完成签到,获得积分10
3秒前
demoliu发布了新的文献求助10
3秒前
3秒前
肥羊七号完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
夜夜完成签到,获得积分10
7秒前
7秒前
Cactus应助liukang172采纳,获得10
8秒前
NexusExplorer应助吼吼哈哈采纳,获得10
8秒前
乐乐应助Raiden采纳,获得20
8秒前
8秒前
轻松绿旋发布了新的文献求助10
9秒前
hzd_23发布了新的文献求助10
10秒前
完美问玉完成签到,获得积分10
10秒前
乙醇完成签到 ,获得积分10
11秒前
云澈发布了新的文献求助10
12秒前
hdisyd完成签到 ,获得积分10
12秒前
蛋挞完成签到,获得积分10
13秒前
Keyl发布了新的文献求助50
13秒前
14秒前
Hiller发布了新的文献求助10
14秒前
14秒前
14秒前
蛋挞发布了新的文献求助10
15秒前
15秒前
15秒前
哇卡卡应助bingchem采纳,获得30
17秒前
17秒前
阳光火车发布了新的文献求助10
18秒前
18秒前
felix发布了新的文献求助10
19秒前
chao Liu完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427