DRAM-Net: A Deep Residual Alzheimer’s Diseases and Mild Cognitive Impairment Detection Network Using EEG Data

痴呆 计算机科学 德拉姆 脑电图 人工智能 认知障碍 阿尔茨海默病 预处理器 分割 认知 模式识别(心理学) 医学 疾病 精神科 病理 计算机硬件
作者
Ashik Mostafa Alvi,Siuly Siuly,Maria Cristina De Cola,Hua Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 42-53 被引量:4
标识
DOI:10.1007/978-3-031-20627-6_5
摘要

Mild Cognitive Impairment (MCI) and Alzheimer's diseases (AD) are two common neurodegenerative disorders which belong to the dementia family mostly found in elders. There is evidence that MCI may lead to Alzheimer's disease. Since there is no treatment for AD after it has been diagnosed, it is a significant public health problem in the twenty-first century. Existing classical machine learning methods fail to detect AD and MCI more efficiently and accurately because of their shallow and limited architecture. Electroencephalography (EEG) is emerging as a portable, non-invasive, and cheap diagnostic tool to analyze MCI and AD, whereas other diagnostic tools like computed tomography, positron emission tomography, mini-mental state examination, and magnetic resonance imaging are expensive and time-consuming. To address these obstacles, a deep residual Alzheimer's disease and MCI detection network (DRAM-Net) based framework has been introduced to detect MCI and AD using EEG data. This multi-class study contains EEG data collection, preprocessing (down-sampling, de-noising and temporal segmentation), DRAM-Net architecture to classify AD, MCI and normal subjects and experiment evaluation stages. Our proposed DRAM-Net framework has obtained 96.26% overall multiclass accuracy, outperforming existing multi-class studies, and also claimed accuracy of 96.66% for the normal class, 98.06% for the MCI class, and 97.79% for the AD class. This study will create a new pathway for future neuro-disease researchers and technology experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jinyu发布了新的文献求助30
1秒前
小学徒完成签到 ,获得积分10
1秒前
zsy发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
LLY发布了新的文献求助10
3秒前
3秒前
典雅聪展完成签到,获得积分10
3秒前
linggaga完成签到,获得积分10
3秒前
典雅的俊驰应助琪哒采纳,获得10
4秒前
隐形曼青应助wlqc采纳,获得10
4秒前
快乐旭尧发布了新的文献求助10
4秒前
落寞鱼完成签到,获得积分10
4秒前
bbb发布了新的文献求助10
5秒前
糖异生给糖异生的求助进行了留言
5秒前
鸣笛应助听风遇见采纳,获得20
5秒前
5秒前
5秒前
123发布了新的文献求助10
6秒前
科研通AI5应助Dd采纳,获得10
6秒前
7秒前
动听的店员完成签到,获得积分20
7秒前
加油少年完成签到,获得积分10
7秒前
7秒前
科研通AI5应助不吃香菜采纳,获得10
7秒前
wuhuhu发布了新的文献求助10
7秒前
8秒前
小蘑菇应助舒适一手采纳,获得10
8秒前
vooov发布了新的文献求助10
8秒前
8秒前
haveatry发布了新的文献求助30
8秒前
丘比特应助无言已对采纳,获得10
9秒前
达达罗发布了新的文献求助10
9秒前
9秒前
小周周完成签到 ,获得积分10
10秒前
我蛋挞呢应助戽斗采纳,获得50
10秒前
万能图书馆应助jinyu采纳,获得10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709