DRAM-Net: A Deep Residual Alzheimer’s Diseases and Mild Cognitive Impairment Detection Network Using EEG Data

痴呆 计算机科学 德拉姆 脑电图 人工智能 认知障碍 阿尔茨海默病 预处理器 分割 认知 模式识别(心理学) 医学 疾病 精神科 病理 计算机硬件
作者
Ashik Mostafa Alvi,Siuly Siuly,Maria Cristina De Cola,Hua Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 42-53 被引量:4
标识
DOI:10.1007/978-3-031-20627-6_5
摘要

Mild Cognitive Impairment (MCI) and Alzheimer's diseases (AD) are two common neurodegenerative disorders which belong to the dementia family mostly found in elders. There is evidence that MCI may lead to Alzheimer's disease. Since there is no treatment for AD after it has been diagnosed, it is a significant public health problem in the twenty-first century. Existing classical machine learning methods fail to detect AD and MCI more efficiently and accurately because of their shallow and limited architecture. Electroencephalography (EEG) is emerging as a portable, non-invasive, and cheap diagnostic tool to analyze MCI and AD, whereas other diagnostic tools like computed tomography, positron emission tomography, mini-mental state examination, and magnetic resonance imaging are expensive and time-consuming. To address these obstacles, a deep residual Alzheimer's disease and MCI detection network (DRAM-Net) based framework has been introduced to detect MCI and AD using EEG data. This multi-class study contains EEG data collection, preprocessing (down-sampling, de-noising and temporal segmentation), DRAM-Net architecture to classify AD, MCI and normal subjects and experiment evaluation stages. Our proposed DRAM-Net framework has obtained 96.26% overall multiclass accuracy, outperforming existing multi-class studies, and also claimed accuracy of 96.66% for the normal class, 98.06% for the MCI class, and 97.79% for the AD class. This study will create a new pathway for future neuro-disease researchers and technology experts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助杰尼龟采纳,获得10
刚刚
十五完成签到,获得积分10
刚刚
纪云海完成签到,获得积分10
1秒前
康家旗完成签到,获得积分10
3秒前
老实怀蝶完成签到,获得积分10
3秒前
医学机长完成签到,获得积分10
4秒前
PANSIXUAN完成签到,获得积分10
4秒前
Daisy完成签到,获得积分10
5秒前
包容的灵完成签到,获得积分10
5秒前
行舟完成签到,获得积分10
5秒前
5秒前
李爱国应助qcpassed采纳,获得10
6秒前
调皮的笑阳完成签到 ,获得积分10
6秒前
那时年少完成签到,获得积分10
6秒前
花城完成签到 ,获得积分10
9秒前
勤恳的嚓茶完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
小魏哥完成签到,获得积分10
10秒前
Hua完成签到,获得积分10
10秒前
小灰灰完成签到 ,获得积分10
11秒前
谦让谷兰完成签到,获得积分10
11秒前
12秒前
SUNYAOSUNYAO完成签到,获得积分10
12秒前
大方芷文完成签到,获得积分10
12秒前
黄6发布了新的文献求助10
13秒前
派出所110完成签到 ,获得积分10
14秒前
谨慎的安柏完成签到,获得积分10
14秒前
自愈合完成签到,获得积分10
15秒前
坦率尔琴完成签到,获得积分10
15秒前
15秒前
看帅哥黑客技术完成签到,获得积分10
15秒前
wsqg123完成签到,获得积分10
16秒前
YeeLeeLee完成签到,获得积分10
18秒前
qcpassed完成签到,获得积分20
19秒前
凶狠的土豆丝完成签到 ,获得积分10
20秒前
独特亦旋发布了新的文献求助10
21秒前
奋斗的若烟完成签到,获得积分10
22秒前
星之完成签到,获得积分10
22秒前
mechefy完成签到,获得积分10
23秒前
怡然思萱完成签到 ,获得积分10
27秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584870
求助须知:如何正确求助?哪些是违规求助? 4668749
关于积分的说明 14771869
捐赠科研通 4616114
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590