Fault diagnosis of the hydraulic valve using a novel semi-supervised learning method based on multi-sensor information fusion

断层(地质) 传感器融合 计算机科学 水力机械 人工智能 数据挖掘 模式识别(心理学) 工程类 机械工程 地质学 地震学
作者
Qi Zhong,Enguang Xu,Yan Shi,Tiwei Jia,Yan Ren,Huayong Yang,Yanbiao Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:189: 110093-110093 被引量:18
标识
DOI:10.1016/j.ymssp.2022.110093
摘要

Hydraulic systems are usually applied in large and complex engineering fields. For hydraulic systems or components in operation, it is difficult to obtain fault data with fault labels due to the high engineering cost. Therefore, a semi-supervised learning (SSL) method based on multi-sensor information fusion is proposed to obtain valuable pseudo label data to diagnose faults of the hydraulic directional valve in operation. In this method, the classification model is trained from a small amount of data with fault labels, thus generating pseudo labels for a large amounts of unmarked data. The contribution of this article is that a multi-sensor fusion algorithm is designed to obtain pseudo labels with high confidence, and an adaptive threshold model similar to generative countermeasure network is designed to intelligently generate thresholds for selecting pseudo labels instead of human intervention. Theoretical and experimental results show that the multi-sensor information fusion algorithm can obtain high confidence pseudo tags, the adaptive threshold model can screen effective pseudo tag samples by generating appropriate thresholds for accelerating the convergence of the classification model. In the hydraulic valve fault diagnostic test, after five iterations, the average diagnosis accuracy of this method can reach 99.72% and 99.00% respectively for different types of hydraulic valves in different engineering fields. This provides a new idea for developing intelligent hydraulic directional valve with self fault diagnosis function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领会完成签到 ,获得积分10
刚刚
科研通AI2S应助Zoe采纳,获得10
1秒前
LXYSB发布了新的文献求助30
1秒前
111111完成签到,获得积分10
1秒前
可爱的函函应助Z.zz采纳,获得10
2秒前
Arlo发布了新的文献求助10
2秒前
爆米花应助感性的又槐采纳,获得10
2秒前
研友_8oYg4n完成签到,获得积分10
3秒前
Cc完成签到 ,获得积分10
6秒前
子初完成签到,获得积分10
6秒前
思源应助酶没美镁采纳,获得10
7秒前
7秒前
7秒前
薰硝壤应助自由冬亦采纳,获得80
9秒前
nini完成签到,获得积分10
9秒前
10秒前
10秒前
yuanquaner完成签到,获得积分10
10秒前
思源应助刘云采纳,获得10
11秒前
ma臻完成签到,获得积分20
11秒前
鱼儿发布了新的文献求助10
11秒前
Z.zz发布了新的文献求助10
13秒前
一树春风发布了新的文献求助10
14秒前
镜哥发布了新的文献求助10
14秒前
lixiansheng发布了新的文献求助10
15秒前
cdm700完成签到,获得积分10
15秒前
17秒前
葡萄成熟时完成签到,获得积分10
17秒前
Limbay168完成签到,获得积分10
18秒前
紫薯球完成签到,获得积分10
19秒前
Millennial完成签到,获得积分10
19秒前
darcy完成签到,获得积分10
20秒前
20秒前
Z.zz完成签到,获得积分20
20秒前
挡住所有坏运气888完成签到,获得积分10
21秒前
888886kn发布了新的文献求助10
21秒前
21秒前
情怀应助淡定靖儿采纳,获得10
21秒前
殷勤的咖啡完成签到,获得积分10
22秒前
在水一方应助xzj采纳,获得10
23秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165215
求助须知:如何正确求助?哪些是违规求助? 2816263
关于积分的说明 7912059
捐赠科研通 2475954
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388