Fault diagnosis of the hydraulic valve using a novel semi-supervised learning method based on multi-sensor information fusion

断层(地质) 传感器融合 计算机科学 水力机械 人工智能 数据挖掘 模式识别(心理学) 工程类 机械工程 地质学 地震学
作者
Qi Zhong,Enguang Xu,Yan Shi,Tiwei Jia,Yan Ren,Huayong Yang,Yanbiao Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:189: 110093-110093 被引量:18
标识
DOI:10.1016/j.ymssp.2022.110093
摘要

Hydraulic systems are usually applied in large and complex engineering fields. For hydraulic systems or components in operation, it is difficult to obtain fault data with fault labels due to the high engineering cost. Therefore, a semi-supervised learning (SSL) method based on multi-sensor information fusion is proposed to obtain valuable pseudo label data to diagnose faults of the hydraulic directional valve in operation. In this method, the classification model is trained from a small amount of data with fault labels, thus generating pseudo labels for a large amounts of unmarked data. The contribution of this article is that a multi-sensor fusion algorithm is designed to obtain pseudo labels with high confidence, and an adaptive threshold model similar to generative countermeasure network is designed to intelligently generate thresholds for selecting pseudo labels instead of human intervention. Theoretical and experimental results show that the multi-sensor information fusion algorithm can obtain high confidence pseudo tags, the adaptive threshold model can screen effective pseudo tag samples by generating appropriate thresholds for accelerating the convergence of the classification model. In the hydraulic valve fault diagnostic test, after five iterations, the average diagnosis accuracy of this method can reach 99.72% and 99.00% respectively for different types of hydraulic valves in different engineering fields. This provides a new idea for developing intelligent hydraulic directional valve with self fault diagnosis function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
种花家的狗狗完成签到,获得积分10
1秒前
请叫我风吹麦浪应助河鲸采纳,获得10
1秒前
眯眯眼的惋庭完成签到,获得积分10
2秒前
4秒前
小潘完成签到 ,获得积分10
4秒前
5秒前
lslslslsllss完成签到,获得积分10
7秒前
C·麦塔芬完成签到,获得积分10
7秒前
超级曲奇完成签到,获得积分20
8秒前
lslslslsllss发布了新的文献求助30
10秒前
11秒前
猪猪hero完成签到,获得积分0
12秒前
136542发布了新的文献求助10
13秒前
14秒前
纯真的靖琪完成签到 ,获得积分10
15秒前
熊猫完成签到,获得积分0
15秒前
桂花酒酿完成签到,获得积分10
16秒前
共享精神应助吉路采纳,获得10
18秒前
甚也完成签到 ,获得积分10
18秒前
超级曲奇发布了新的文献求助20
19秒前
冷静橘子完成签到,获得积分10
20秒前
wind完成签到 ,获得积分10
23秒前
23秒前
又来注水了完成签到,获得积分10
24秒前
深情安青应助风评采纳,获得10
26秒前
大个应助王同学采纳,获得10
26秒前
令莞发布了新的文献求助10
27秒前
成就迎梅发布了新的文献求助10
28秒前
踏雪完成签到,获得积分10
29秒前
asdf完成签到,获得积分10
29秒前
在水一方应助hahahaweiwei采纳,获得30
29秒前
April完成签到 ,获得积分0
32秒前
优美巧曼完成签到 ,获得积分10
32秒前
英俊的铭应助ligang0402采纳,获得10
33秒前
gdh发布了新的文献求助10
33秒前
36秒前
38秒前
慕青应助漂亮的冷风采纳,获得10
38秒前
Li发布了新的文献求助10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311