亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fault diagnosis of the hydraulic valve using a novel semi-supervised learning method based on multi-sensor information fusion

断层(地质) 传感器融合 计算机科学 水力机械 人工智能 数据挖掘 模式识别(心理学) 工程类 机械工程 地质学 地震学
作者
Qi Zhong,Enguang Xu,Yan Shi,Tiwei Jia,Yan Ren,Huayong Yang,Yanbiao Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:189: 110093-110093 被引量:18
标识
DOI:10.1016/j.ymssp.2022.110093
摘要

Hydraulic systems are usually applied in large and complex engineering fields. For hydraulic systems or components in operation, it is difficult to obtain fault data with fault labels due to the high engineering cost. Therefore, a semi-supervised learning (SSL) method based on multi-sensor information fusion is proposed to obtain valuable pseudo label data to diagnose faults of the hydraulic directional valve in operation. In this method, the classification model is trained from a small amount of data with fault labels, thus generating pseudo labels for a large amounts of unmarked data. The contribution of this article is that a multi-sensor fusion algorithm is designed to obtain pseudo labels with high confidence, and an adaptive threshold model similar to generative countermeasure network is designed to intelligently generate thresholds for selecting pseudo labels instead of human intervention. Theoretical and experimental results show that the multi-sensor information fusion algorithm can obtain high confidence pseudo tags, the adaptive threshold model can screen effective pseudo tag samples by generating appropriate thresholds for accelerating the convergence of the classification model. In the hydraulic valve fault diagnostic test, after five iterations, the average diagnosis accuracy of this method can reach 99.72% and 99.00% respectively for different types of hydraulic valves in different engineering fields. This provides a new idea for developing intelligent hydraulic directional valve with self fault diagnosis function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助蒙豆儿采纳,获得10
24秒前
33秒前
蒙豆儿发布了新的文献求助10
37秒前
汉堡包应助科研通管家采纳,获得10
42秒前
乐乐应助科研通管家采纳,获得10
42秒前
1分钟前
2分钟前
fsznc1完成签到 ,获得积分0
2分钟前
情怀应助孙孙采纳,获得10
2分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
3分钟前
孙孙发布了新的文献求助10
3分钟前
彭于晏应助蒙豆儿采纳,获得30
4分钟前
4分钟前
蒙豆儿发布了新的文献求助30
4分钟前
依然灬聆听完成签到,获得积分10
4分钟前
Z可完成签到,获得积分10
4分钟前
科研通AI2S应助pxy采纳,获得10
5分钟前
orixero应助袁青寒采纳,获得10
5分钟前
6分钟前
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
8分钟前
嘻嘻完成签到,获得积分10
8分钟前
abc完成签到 ,获得积分10
9分钟前
lixuebin完成签到 ,获得积分10
10分钟前
NexusExplorer应助狂奔弟弟采纳,获得10
10分钟前
10分钟前
狂奔弟弟发布了新的文献求助10
10分钟前
狂奔弟弟完成签到,获得积分10
11分钟前
a61完成签到,获得积分10
11分钟前
11分钟前
zsc发布了新的文献求助10
11分钟前
HYQ完成签到 ,获得积分10
12分钟前
MchemG完成签到,获得积分0
12分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
Ava应助科研通管家采纳,获得10
12分钟前
沐雨微寒完成签到,获得积分10
13分钟前
科研通AI6应助马良采纳,获得10
13分钟前
科研通AI2S应助hairgod采纳,获得10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582317
求助须知:如何正确求助?哪些是违规求助? 4000095
关于积分的说明 12382127
捐赠科研通 3674975
什么是DOI,文献DOI怎么找? 2025631
邀请新用户注册赠送积分活动 1059307
科研通“疑难数据库(出版商)”最低求助积分说明 945946