Conditional GAN-based deep network for seamless large-FOV imaging by camera array

人工智能 计算机科学 图像拼接 计算机视觉 修补 深度学习 衬垫 图像分辨率 图像四周暗角 图像(数学) 镜头(地质) 计算机安全 石油工程 工程类
作者
Weihang Zhang,Lianglong Li,Jinli Suo,Qionghai Dai
标识
DOI:10.1117/12.2642316
摘要

Due to limited spatial bandwidth, one has to compromise between large field of view and high spatial resolution in both photography and microscopy. This dilemma largely hampers revealing fine details and global structures of the target scene simultaneously. Recently, a mainstream method is formed by utilizing multiple sensors for synchronous acquisition across different sub-FOVs with high resolution and stitching the patches according to the spatial position of the cameras. Various inpainting algorithms have been proposed to eliminate the intensity discontinuities, but conventional optimization methods are prone to misalignment, seaming artifacts or long processing time, and thus unable to achieve dynamic gap elimination. By taking advantage of generative adversarial networks (GANs) on image generation and padding, we propose a conditional GAN-based deep neural network for seamless gap inpainting. Specifically, a short series of displaced images are acquired to characterize the system configuration, under which we generate patch pairs with and without gap for deep network training. After supervised learning, we can achieve seamless inpainting in gap regions. To validate the proposed approach, we apply our approach on real data captured by large-scale imaging systems and demonstrate that the missing information at gaps can be retrieved successfully. We believe the proposed method holds potential for all-round observation in various fields including urban surveillance and systems biology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝的黑猫完成签到,获得积分10
刚刚
小二郎应助吱吱采纳,获得10
1秒前
GGbond完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
zhaoming完成签到 ,获得积分10
8秒前
zzw完成签到,获得积分10
8秒前
香蕉觅云应助娇气的背包采纳,获得10
9秒前
junhaowang完成签到 ,获得积分10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
xzy998应助科研通管家采纳,获得10
11秒前
chelsea完成签到,获得积分10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
TaoJ应助科研通管家采纳,获得10
11秒前
xzy998应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
yyyyyyyyjt发布了新的文献求助10
13秒前
chenxuuu发布了新的文献求助10
13秒前
砼砼发布了新的文献求助10
13秒前
yuan完成签到,获得积分10
14秒前
xiaokalami发布了新的文献求助10
15秒前
杨雨帆发布了新的文献求助10
16秒前
yuan发布了新的文献求助10
18秒前
19秒前
19秒前
梅倪完成签到,获得积分10
20秒前
华仔应助777采纳,获得10
21秒前
羊羊完成签到 ,获得积分10
21秒前
鱼鱼完成签到 ,获得积分10
22秒前
24秒前
李巧儿发布了新的文献求助10
24秒前
背书强发布了新的文献求助10
26秒前
28秒前
1vvvv发布了新的文献求助10
30秒前
CodeCraft应助文明8采纳,获得10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967