Multiobjective 3-D UAV Movement Planning in Wireless Sensor Networks Using Bioinspired Swarm Intelligence

计算机科学 无线传感器网络 粒子群优化 实时计算 地铁列车时刻表 运动规划 群体行为 网格 异步通信 分布式计算 人工智能 计算机网络 算法 机器人 数学 操作系统 几何学
作者
Aliia Beishenalieva,Sang-Jo Yoo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (9): 8096-8110 被引量:2
标识
DOI:10.1109/jiot.2022.3231302
摘要

The use of unmanned aerial vehicles (UAVs) is a promising solution to efficiently acquire data in large-scale wireless sensor networks (WSNs). In a wide-area WSN environment, UAV path planning is one of the challenging issues in solving the optimization problem to achieve complex and multiple objectives under various constraints related to UAV operation. In this article, we propose a novel asynchronous UAV path planning mechanism for multiobjective UAV operation. In a 3-D sensor field, a grid-based sensor field and information gathering model is introduced. We define a UAV coverage area where line-of-sight communication is possible between a UAV and the sensors and propose a method to quickly find the grid cells within the coverage area. We define a multipurpose fitness function that maximizes the value of the acquired sensing information and at the same time minimizes the time and energy required for UAV operation. The value of the sensing information reflects the sensor density for each sensor type within UAV coverage, as well as changes in the sensing information values over time. In the proposed method, time and energy objective functions are learned by considering location-dependent communication link quality, sensor density, and the next UAV locations. The optimum UAV position and the movement schedule of each UAV are asynchronously derived using the proposed particle swarm optimization (PSO) algorithm with several UAV operational constraints. The experimental results demonstrate that the proposed method can maximize the utility of the objective function and achieve fast convergence in finding the optimal solution compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蒋锵锵发布了新的文献求助10
1秒前
1秒前
2秒前
科目三应助林小雨采纳,获得10
2秒前
Faye完成签到,获得积分20
4秒前
Yiy发布了新的文献求助10
4秒前
不苦完成签到,获得积分10
4秒前
大胆笑翠完成签到,获得积分10
5秒前
5秒前
zzyytt发布了新的文献求助10
6秒前
zhang发布了新的文献求助10
6秒前
7秒前
爱静静应助szyt4018采纳,获得10
9秒前
gudad完成签到,获得积分10
10秒前
CodeCraft应助Faye采纳,获得10
13秒前
Henry给Ulysses的求助进行了留言
15秒前
18秒前
慕青应助霜降采纳,获得10
18秒前
18秒前
19秒前
19秒前
Orange应助龙龙不卷采纳,获得10
20秒前
20秒前
kxdr完成签到,获得积分10
20秒前
22秒前
ku发布了新的文献求助10
23秒前
23秒前
王甜甜完成签到,获得积分20
24秒前
24秒前
汉堡包应助阳风采纳,获得10
25秒前
25秒前
Poman完成签到,获得积分10
25秒前
小台发布了新的文献求助20
25秒前
林小雨发布了新的文献求助10
25秒前
25秒前
花景铭完成签到,获得积分10
26秒前
13508104971发布了新的文献求助20
26秒前
27秒前
season发布了新的文献求助40
27秒前
Wish发布了新的文献求助10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260739
求助须知:如何正确求助?哪些是违规求助? 2901859
关于积分的说明 8317799
捐赠科研通 2571583
什么是DOI,文献DOI怎么找? 1397109
科研通“疑难数据库(出版商)”最低求助积分说明 653642
邀请新用户注册赠送积分活动 632153