已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiobjective 3-D UAV Movement Planning in Wireless Sensor Networks Using Bioinspired Swarm Intelligence

计算机科学 无线传感器网络 粒子群优化 实时计算 地铁列车时刻表 运动规划 群体行为 网格 异步通信 分布式计算 人工智能 计算机网络 算法 机器人 数学 操作系统 几何学
作者
Aliia Beishenalieva,Sang-Jo Yoo
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (9): 8096-8110 被引量:2
标识
DOI:10.1109/jiot.2022.3231302
摘要

The use of unmanned aerial vehicles (UAVs) is a promising solution to efficiently acquire data in large-scale wireless sensor networks (WSNs). In a wide-area WSN environment, UAV path planning is one of the challenging issues in solving the optimization problem to achieve complex and multiple objectives under various constraints related to UAV operation. In this article, we propose a novel asynchronous UAV path planning mechanism for multiobjective UAV operation. In a 3-D sensor field, a grid-based sensor field and information gathering model is introduced. We define a UAV coverage area where line-of-sight communication is possible between a UAV and the sensors and propose a method to quickly find the grid cells within the coverage area. We define a multipurpose fitness function that maximizes the value of the acquired sensing information and at the same time minimizes the time and energy required for UAV operation. The value of the sensing information reflects the sensor density for each sensor type within UAV coverage, as well as changes in the sensing information values over time. In the proposed method, time and energy objective functions are learned by considering location-dependent communication link quality, sensor density, and the next UAV locations. The optimum UAV position and the movement schedule of each UAV are asynchronously derived using the proposed particle swarm optimization (PSO) algorithm with several UAV operational constraints. The experimental results demonstrate that the proposed method can maximize the utility of the objective function and achieve fast convergence in finding the optimal solution compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYL07完成签到 ,获得积分10
3秒前
赵心宇发布了新的文献求助10
4秒前
6秒前
6秒前
野子发布了新的文献求助10
10秒前
kk发布了新的文献求助10
11秒前
zzy发布了新的文献求助10
14秒前
强健的迎波完成签到,获得积分10
14秒前
幸运小怪兽完成签到,获得积分10
15秒前
mmy完成签到 ,获得积分10
16秒前
ding应助野子采纳,获得10
18秒前
18秒前
mmy关注了科研通微信公众号
20秒前
zhy完成签到,获得积分10
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
coolkid应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
佳啊发布了新的文献求助10
23秒前
luo发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
27秒前
夏天无完成签到 ,获得积分10
29秒前
zhengxu发布了新的文献求助30
29秒前
随遇而安完成签到 ,获得积分10
30秒前
JRRskynet发布了新的文献求助10
30秒前
tianzhanggong发布了新的文献求助30
31秒前
31秒前
31秒前
31秒前
许愿完成签到 ,获得积分10
33秒前
34秒前
夭夭发布了新的文献求助10
34秒前
佳啊完成签到,获得积分10
36秒前
37秒前
自信向梦完成签到,获得积分10
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749