Bioinspired Three-Dimensional Nanoporous Membranes for Salinity-Gradient Energy Harvesting

反向电渗析 渗透力 纳米孔 电渗析 纳米技术 浓差极化 材料科学 可再生能源 工艺工程 化学 工程类 电气工程 正渗透 反渗透 生物化学
作者
Jian Wang,Yahong Zhou,Lei Jiang
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (1): 86-100 被引量:7
标识
DOI:10.1021/accountsmr.2c00210
摘要

ConspectusSalinity-gradient energy represents a widespread, clean, environmentally friendly, and sustainable source of renewable energy, which has attracted great attention in the past years. To harness this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to develop efficient and low-cost approaches and materials for energy conversion. Conventional reverse electrodialysis (RED) systems are generally based on ion-exchange membranes, which usually suffer from ineffective mass transport, high membrane resistance, limited pore size, and concentration polarization, resulting in low output power density and poor energy-conversion efficiency. As one promising material, nanofluidic channels with their unique transport properties, which can be attributed to nanoconfinement effect, enable high-performance reverse electrodialysis to efficiently harvest salinity-gradient energy. Due to the unique porous architectures, three-dimensional (3D) nanoporous membranes demonstrate great potential for harvesting salinity-gradient power. It is generally known that the porous membranes can be prepared by many methods; however, there are some shortcomings such as high costs, poor ion conductance, and fragility limiting the practical application. Several simple and versatile approaches to low-cost fabrication of 3D nanoporous membranes have been developed in recent years. For example, self-assembly provides an effective route of constructing functional materials and organizing them into 3D architectures. In this Account, we mainly review our recent progress in the design and fabrication of bioinspired 3D nanoporous membranes for salinity-gradient energy harvesting. First, we give a brief introduction to bioinspired nanochannel membranes (BNMs) with diverse structural dimensions, and nanofluidic channel membranes may lead to technological breakthroughs and thus act as an emerging platform for harvesting salinity-gradient energy. Subsequently, we discuss the typical preparation approaches for bioinspired 3D nanoporous membranes. To tackle the bottlenecks of the conventional membrane-based power generator and extrapolate single-channel devices to macroscopic materials, our group have developed a series of 3D nanoporous membranes for power generation via various simple and versatile methods. We highlight the design and fabrication of several types of 3D nanoporous membranes, i.e., heterogeneous and homogeneous membranes, with tunable surface charge and porosity. The proof-of-concept demonstration of bioinspired 3D porous membranes shows that these nanofluidic platforms have the potential to overcome the selectivity-permeability trade-off and have impressive osmotic-energy-harvesting performance. Specifically, the scale-up Janus 3D porous membranes maintained high selectivity and rectified current in a hypersaline environment, which benefitted effective energy conversion and high output power density when seawater and river water were mixed. Finally, we give an outlook for future challenges and perspectives on the development of 3D nanofluidics for salinity-gradient energy conversion. We expect that this Account will spark further efforts on the development of bioinspired 3D nanoporous membranes for large-scale (typical side length of more than 10 cm) energy conversion and new opportunities for the applications in water desalination, dialysis, and ionic circuitries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石榴发布了新的文献求助10
1秒前
21完成签到,获得积分10
2秒前
紫熊发布了新的文献求助20
3秒前
遇安发布了新的文献求助10
4秒前
希望天下0贩的0应助ssw采纳,获得10
4秒前
4秒前
汉堡包应助无敌最俊朗采纳,获得10
4秒前
清新的海云给清新的海云的求助进行了留言
7秒前
白河夜船发布了新的文献求助10
9秒前
小蘑菇应助石榴采纳,获得10
10秒前
华仔应助NCU-Xzzzz采纳,获得10
11秒前
香蕉觅云应助xin采纳,获得30
12秒前
孟寐以求发布了新的文献求助10
14秒前
16秒前
16秒前
我是老大应助陈皮糖不酸采纳,获得10
19秒前
麻瓜完成签到,获得积分20
20秒前
21秒前
orixero应助宥沐采纳,获得10
21秒前
22秒前
NCU-Xzzzz发布了新的文献求助10
22秒前
义气鞋子发布了新的文献求助30
22秒前
22秒前
ephore应助麻瓜采纳,获得20
23秒前
胖崽胖崽发布了新的文献求助10
27秒前
27秒前
遇安完成签到,获得积分10
27秒前
saeda应助科研通管家采纳,获得10
34秒前
Ava应助科研通管家采纳,获得10
35秒前
tramp应助科研通管家采纳,获得10
35秒前
pluto应助科研通管家采纳,获得10
35秒前
汉堡包应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
丘比特应助科研通管家采纳,获得10
35秒前
桐桐应助ZHOU采纳,获得10
35秒前
36秒前
36秒前
FelixFelicis完成签到 ,获得积分10
38秒前
高分求助中
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Nonlocal Integral Equation Continuum Models: Nonstandard Symmetric Interaction Neighborhoods and Finite Element Discretizations 500
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2871220
求助须知:如何正确求助?哪些是违规求助? 2479040
关于积分的说明 6718308
捐赠科研通 2165843
什么是DOI,文献DOI怎么找? 1150668
版权声明 585640
科研通“疑难数据库(出版商)”最低求助积分说明 564989