On-Demand Delivery from Stores: Dynamic Dispatching and Routing with Random Demand

计算机科学 布线(电子设计自动化) 运筹学 动态定价 数学优化 集合(抽象数据类型) 马尔可夫决策过程 维数之咒 经济 微观经济学 马尔可夫过程 工程类 数学 计算机网络 机器学习 统计 程序设计语言
作者
Sheng Liu,Zhixing Luo
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 595-612 被引量:19
标识
DOI:10.1287/msom.2022.1171
摘要

Problem definition: On-demand delivery has become increasingly popular around the world. Motivated by a large grocery chain store who offers fast on-demand delivery services, we model and solve a stochastic dynamic driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The system operator needs to dispatch a set of drivers and specify their delivery routes facing random demand that arrives over a fixed number of periods. The resulting stochastic dynamic program is challenging to solve because of the curse of dimensionality. Methodology/results: We propose a novel structured approximation framework to approximate the value function via a parametrized dispatching and routing policy. We analyze the structural properties of the approximation framework and establish its performance guarantee under large-demand scenarios. We then develop efficient exact algorithms for the approximation problem based on Benders decomposition and column generation, which deliver verifiably optimal solutions within minutes. Managerial implications: The evaluation results on a real-world data set show that our framework outperforms the current policy of the company by 36.53% on average in terms of delivery time. We also perform several policy experiments to understand the value of dynamic dispatching and routing with varying fleet sizes and dispatch frequencies. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72222011 and 72171112], China Association for Science and Technology [Grant 2019QNRC001], and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.1171 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宵宵发布了新的文献求助10
1秒前
2秒前
yaswer发布了新的文献求助10
2秒前
梧桐的灯完成签到,获得积分10
4秒前
香蕉孤云发布了新的文献求助10
5秒前
5秒前
MingqingFang发布了新的文献求助10
5秒前
6秒前
缘迹发布了新的文献求助10
7秒前
苏卿应助Fan采纳,获得10
7秒前
9秒前
那些兔儿完成签到 ,获得积分10
9秒前
打打应助沐兮采纳,获得10
9秒前
科研进化中完成签到,获得积分10
9秒前
mimosa完成签到,获得积分10
9秒前
以鹿之路发布了新的文献求助10
10秒前
yile发布了新的文献求助10
10秒前
11秒前
六天发布了新的文献求助30
12秒前
13秒前
14秒前
mimosa发布了新的文献求助10
15秒前
科研通AI2S应助Fan采纳,获得10
15秒前
16秒前
清皓完成签到,获得积分10
16秒前
17秒前
傲娇犀牛完成签到,获得积分10
17秒前
ccx完成签到,获得积分10
18秒前
liang19640908完成签到 ,获得积分10
18秒前
18秒前
18秒前
19秒前
十四吉发布了新的文献求助10
19秒前
21秒前
RebeccaHe给阿泽的求助进行了留言
21秒前
温暖幻桃发布了新的文献求助10
21秒前
温水煮青蛙完成签到 ,获得积分10
22秒前
六天完成签到,获得积分20
24秒前
沐兮发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159555
求助须知:如何正确求助?哪些是违规求助? 2810543
关于积分的说明 7888660
捐赠科研通 2469574
什么是DOI,文献DOI怎么找? 1314953
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012