On-Demand Delivery from Stores: Dynamic Dispatching and Routing with Random Demand

计算机科学 布线(电子设计自动化) 运筹学 动态定价 数学优化 集合(抽象数据类型) 马尔可夫决策过程 维数之咒 经济 微观经济学 马尔可夫过程 工程类 数学 计算机网络 程序设计语言 统计 机器学习
作者
Sheng Liu,Zhixing Luo
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 595-612 被引量:27
标识
DOI:10.1287/msom.2022.1171
摘要

Problem definition: On-demand delivery has become increasingly popular around the world. Motivated by a large grocery chain store who offers fast on-demand delivery services, we model and solve a stochastic dynamic driver dispatching and routing problem for last-mile delivery systems where on-time performance is the main target. The system operator needs to dispatch a set of drivers and specify their delivery routes facing random demand that arrives over a fixed number of periods. The resulting stochastic dynamic program is challenging to solve because of the curse of dimensionality. Methodology/results: We propose a novel structured approximation framework to approximate the value function via a parametrized dispatching and routing policy. We analyze the structural properties of the approximation framework and establish its performance guarantee under large-demand scenarios. We then develop efficient exact algorithms for the approximation problem based on Benders decomposition and column generation, which deliver verifiably optimal solutions within minutes. Managerial implications: The evaluation results on a real-world data set show that our framework outperforms the current policy of the company by 36.53% on average in terms of delivery time. We also perform several policy experiments to understand the value of dynamic dispatching and routing with varying fleet sizes and dispatch frequencies. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72222011 and 72171112], China Association for Science and Technology [Grant 2019QNRC001], and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2022-04950]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/msom.2022.1171 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷傲的尔白完成签到,获得积分10
1秒前
1秒前
和谐谷蕊完成签到,获得积分10
1秒前
橙子发布了新的文献求助10
1秒前
2秒前
yar完成签到,获得积分0
2秒前
2秒前
2秒前
2秒前
顾暖完成签到,获得积分10
2秒前
隐形曼青应助囚徒采纳,获得10
3秒前
4秒前
英俊安蕾发布了新的文献求助10
4秒前
苹果发布了新的文献求助10
4秒前
繁荣的萝莉完成签到,获得积分10
4秒前
4秒前
5秒前
Ava应助苏氨酸采纳,获得30
5秒前
6秒前
胡燕完成签到 ,获得积分10
6秒前
lirongcas完成签到,获得积分20
6秒前
隐形觅翠发布了新的文献求助10
6秒前
SYLH应助聪慧冰淇淋采纳,获得10
6秒前
淡然秋蝶关注了科研通微信公众号
6秒前
iii发布了新的文献求助10
7秒前
mumu发布了新的文献求助10
7秒前
7秒前
7秒前
gmc完成签到 ,获得积分10
8秒前
小橙子完成签到,获得积分10
8秒前
8秒前
tkzzz完成签到,获得积分10
8秒前
博修发布了新的文献求助30
9秒前
霏冉完成签到,获得积分10
9秒前
9秒前
旭爸爸发布了新的文献求助10
9秒前
医路有你完成签到 ,获得积分10
9秒前
HJJHJH发布了新的文献求助10
9秒前
mmc完成签到,获得积分10
10秒前
Felice完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650