亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determination of the parameters of material models using dynamic indentation test and artificial neural network

缩进 分离式霍普金森压力棒 人工神经网络 材料科学 LS-DYNA系列 结构工程 应变率 复合材料 机械 有限元法 工程类 计算机科学 物理 人工智能
作者
Samaneh Pourolajal,Gholam Hossein Majzoobi
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE]
卷期号:58 (6): 501-514
标识
DOI:10.1177/03093247221140981
摘要

Stress-strain curves of materials normally change with strain rate and temperature and are normally defined by material models. In this study, a new technique was developed for determining the constants of material models. This technique was based on dynamic indentation test, numerical simulation using Ls-dyna code and artificial neural network. An indenter of tapered shape was shot against the materials as the target by a gas gun. The experiments were carried out for four strain rates and four temperatures. The target was made of pure copper. The penetration depth-time and load-time histories were captured by a LVDT and a piezoelectric load-cell, respectively and the load-penetration depth curve (P-h) was obtained. This curve is characterized by five parameters which are determined for each indentation test. On the other hand, the indentation test was simulated using Ls-dyna hydrocode. From the simulations, the P-h curves were obtained using Johnson-Cook (J-C) and Zerilli-Armstrong (Z-A) material models and the characterizing parameters of the numerical P-h curves were also identified. Finally, an artificial neural network (ANN) was trained by the numerical P-h curves parameters as the input and the constants of J-C and Z-A models as the output. The trained neural network was then tested by the experimental p-h curves parameters as the input and the constants of J-C and Z-A models as the output. Moreover, a number of dynamic compression tests were performed using the well-known Split Hopkinson Bar at the same strain rates and temperatures used for indentation tests and the stress-strain curves of material were obtained. A reasonable agreement was observed between the stress-strain curves predicted by neural network and the Split Hopkinson Bar. The proposed method does not need sophisticated instrumentation and in fact, the load-time and indentation depth-time histories are directly converted to stress-strain of material using an artificial neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
47秒前
FUNG完成签到 ,获得积分10
48秒前
1分钟前
yang发布了新的文献求助10
1分钟前
yang完成签到,获得积分20
2分钟前
Jonas完成签到,获得积分10
3分钟前
摆烂的熊猫完成签到,获得积分20
3分钟前
柔弱的恋风完成签到 ,获得积分10
4分钟前
5分钟前
ding应助淡然平蓝采纳,获得10
5分钟前
chiazy完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
爱静静完成签到,获得积分0
6分钟前
zyx完成签到,获得积分10
6分钟前
wy123完成签到 ,获得积分10
6分钟前
善学以致用应助markzhang采纳,获得10
7分钟前
8分钟前
markzhang发布了新的文献求助10
8分钟前
喜雨起来啦完成签到,获得积分10
8分钟前
SciGPT应助markzhang采纳,获得10
8分钟前
科研通AI2S应助zhouleiwang采纳,获得10
9分钟前
冬去春来完成签到 ,获得积分10
9分钟前
烟花应助zhouleiwang采纳,获得10
10分钟前
上官若男应助碧蓝一德采纳,获得10
10分钟前
10分钟前
yy发布了新的文献求助10
10分钟前
10分钟前
顾矜应助yy采纳,获得10
10分钟前
烟花应助科研通管家采纳,获得10
10分钟前
markzhang发布了新的文献求助10
10分钟前
yy完成签到,获得积分10
10分钟前
markzhang完成签到,获得积分10
11分钟前
11分钟前
zhouleiwang发布了新的文献求助10
11分钟前
11分钟前
13分钟前
浮曳发布了新的文献求助10
13分钟前
Sandy完成签到 ,获得积分10
13分钟前
13分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7807005
捐赠科研通 2449865
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328