3D particulate-scale numerical investigation on hot isostatic pressing of W-Cu composites

热等静压 复合材料 材料科学 粒径 粒子(生态学) 质量分数 冯·米塞斯屈服准则 复合数 相对密度 热压 压力(语言学) 体积分数 应变率 冶金 有限元法 合金 热力学 烧结 化学 物理化学 哲学 地质学 物理 海洋学 语言学
作者
Meng Li,Qian Jia,Chao Li,Quanfeng Guo,Xizhong An,Qingchuan Zou,Xianglin Zhou,Haitao Fu,Hao Zhang,Xiaohong Yang,Quan Qian
出处
期刊:Powder Technology [Elsevier]
卷期号:415: 118150-118150 被引量:3
标识
DOI:10.1016/j.powtec.2022.118150
摘要

The hot isostatic pressing (HIP) of W-Cu composite powders with different compositions and size ratios was numerically reproduced by using 3D multi-particle finite element method (MPFEM) from particulate scale. The effects of temperature, pressure, mass fraction of Cu particles as well as Cu/W size ratio on the densification behavior of W-Cu compacts were systematically discussed. The macroscopic property such as relative density and various microscopic properties such as stress/strain distributions of W and Cu particles, strain rate, contact normal force, densification mechanisms and so on were quantitatively characterized and analyzed. The results indicate that the higher temperature induces Cu particles to having a more significant decrease in the equivalent Von Mises stress than W particles, leading to a larger difference of the equivalent total strain and the equivalent plastic strain rate between W and Cu particles; also, the contact normal force of particles in the cluster is smaller when the temperature is higher. The size ratio has no obvious effect on the equivalent stress distribution of W and Cu particles. While the smaller the size ratio, the larger the equivalent total strain of Cu particles, resulting in a larger difference of equivalent total strains between W and Cu particles, and the smaller the normal contact force of Cu particles in the cluster. The mass fraction of Cu particles can significantly affect the compressibility of W-Cu compacts. The smaller the mass fraction of Cu particles, the lower the relative density and the greater the total strain energy of the W-Cu compact. The plastic deformation of Cu particles caused by the synergetic action of temperature and pressure is the main reason for its densification mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助通~采纳,获得10
1秒前
端庄的黑米完成签到,获得积分10
1秒前
1秒前
领导范儿应助坤坤采纳,获得10
1秒前
2秒前
神勇的雅香应助司徒迎曼采纳,获得10
2秒前
2秒前
bkagyin应助椰子采纳,获得10
2秒前
Owen应助舒服的茹嫣采纳,获得10
2秒前
呼吸之野应助按住心动采纳,获得20
3秒前
3秒前
身为风帆发布了新的文献求助10
3秒前
changjiaren完成签到,获得积分10
3秒前
风中的怜阳完成签到,获得积分10
4秒前
自信号厂完成签到 ,获得积分10
4秒前
小蘑菇应助ccc采纳,获得10
5秒前
shuo完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
aich完成签到,获得积分10
6秒前
上官若男应助YE采纳,获得10
7秒前
Jasper应助YaoX采纳,获得10
7秒前
天天快乐应助威武绿真采纳,获得10
7秒前
MADKAI发布了新的文献求助10
7秒前
8秒前
慕青应助April采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
Xu发布了新的文献求助10
8秒前
manan发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
张张完成签到,获得积分10
9秒前
Dream发布了新的文献求助30
9秒前
9秒前
henry完成签到,获得积分10
10秒前
雾蓝发布了新的文献求助10
10秒前
桃子发布了新的文献求助10
10秒前
烟花应助刘星星采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740