MRI- and Histologic-Molecular-Based Radio-Genomics Nomogram for Preoperative Assessment of Risk Classes in Endometrial Cancer

医学 基因组学 子宫内膜癌 列线图 放射科 肿瘤科 计算生物学 内科学 癌症 生物 基因组 基因 遗传学
作者
Veronica Celli,Michele Guerreri,Angelina Pernazza,Ilaria Cuccu,Innocenza Palaia,Federica Tomao,Violante Di Donato,Paola Pricolo,Giada Ercolani,Sandra Ciulla,Nicoletta Colombo,Martina Leopizzi,Valeria Di Maio,Eliodoro Faiella,Domiziana Santucci,Paolo Soda,Ermanno Cordelli,Giorgia Perniola,Benedetta Gui,Stefania Rizzo,Carlo Della Rocca,Giuseppe Petralia,Carlo Catalano,Lucia Manganaro
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:14 (23): 5881-5881 被引量:23
标识
DOI:10.3390/cancers14235881
摘要

High- and low-risk endometrial carcinoma (EC) differ in whether or not a lymphadenectomy is performed. We aimed to develop MRI-based radio-genomic models able to preoperatively assess lymph-vascular space invasion (LVSI) and discriminate between low- and high-risk EC according to the ESMO-ESGO-ESTRO 2020 guidelines, which include molecular risk classification proposed by “ProMisE”. This is a retrospective, multicentric study that included 64 women with EC who underwent 3T-MRI before a hysterectomy. Radiomics features were extracted from T2WI images and apparent diffusion coefficient maps (ADC) after manual segmentation of the gross tumor volume. We constructed a multiple logistic regression approach from the most relevant radiomic features to distinguish between low- and high-risk classes under the ESMO-ESGO-ESTRO 2020 guidelines. A similar approach was taken to assess LVSI. Model diagnostic performance was assessed via ROC curves, accuracy, sensitivity and specificity on training and test sets. The LVSI predictive model used a single feature from ADC as a predictor; the risk class model used two features as predictors from both ADC and T2WI. The low-risk predictive model showed an AUC of 0.74 with an accuracy, sensitivity, and specificity of 0.74, 0.76, 0.94; the LVSI model showed an AUC of 0.59 with an accuracy, sensitivity, and specificity of 0.60, 0.50, 0.61. MRI-based radio-genomic models are useful for preoperative EC risk stratification and may facilitate therapeutic management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘佳会发布了新的文献求助10
1秒前
SciGPT应助学术丁真采纳,获得10
1秒前
1秒前
Orange应助winna采纳,获得10
3秒前
辛勤的乌发布了新的文献求助10
5秒前
酷波er应助HXY采纳,获得200
5秒前
哈哈哈发布了新的文献求助10
6秒前
华仔应助夏天采纳,获得10
9秒前
星辰大海应助沉海采纳,获得30
10秒前
shbkmy发布了新的文献求助30
10秒前
11秒前
深情安青应助肯瑞恩哭哭采纳,获得10
14秒前
脑洞疼应助Tangyartie采纳,获得10
16秒前
YYY发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
19秒前
fuje发布了新的文献求助10
19秒前
学术丁真发布了新的文献求助10
19秒前
lin应助左丘白桃采纳,获得10
21秒前
Muhammad发布了新的文献求助10
22秒前
YYY完成签到,获得积分10
22秒前
夏天发布了新的文献求助10
23秒前
充电宝应助刘述采纳,获得10
24秒前
大模型应助mg采纳,获得10
25秒前
25秒前
灼灼朗朗完成签到,获得积分10
26秒前
27秒前
搜集达人应助感动的广缘采纳,获得10
28秒前
28秒前
量子星尘发布了新的文献求助30
29秒前
柔弱的如容关注了科研通微信公众号
29秒前
浅言完成签到 ,获得积分10
29秒前
34秒前
34秒前
Hexagram发布了新的文献求助10
34秒前
1x3发布了新的文献求助20
34秒前
35秒前
arui完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516